Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
Technology in Eduction and Training

Akash K Singh, PhD
IBM Corporation Sacramento, USA

Abstract

The Internet has enabled a great amount of information to be readily available and easily accessible. It has promoted several changes in the world, including in the education area. Nowadays, there is a great amount of educational and training systems, which provide different functionality according to specific administrative, pedagogical and technological approaches. Authoring tools, content repositories, evaluation and assessment, curriculum design and collaborative tools are some pieces of this educational "puzzle". This paper describes a generic architecture for educational and training systems from the software development point of view. Then this architecture is discussed according to web technology, enabling a better understanding of the involved technological aspects of educational and training systems.

Keywords- Advanced metering infrastructure (AMI), communication technologies, quality-ofservice (QoS), smart grid, standards

I. INTRODUCTION

There are three main aspects that support education: administration, pedagogy and technology, which through a variety of combinations imply on different educational and training systems, with different approaches. Whenever there is a new strategy, method or technique in one of these aspects, it is expected its propagation to educational and training systems. In addition, the development of the web and its application on educational and training environments has led to the development of new learning theories and philosophies ([1], [2] and [3]). This "world of differences" makes difficult the cooperation of educational and training partners in order to allow reuse of e-learning content and services. To enable learning content reuse organizations such as IEEE, IMS Global Learning Consortium and ADL have worked to develop technical standards, recommended practices and guides for learning technology. In general, the main focus is on describing learning content (e.g., [4], [5] and [6]). To deal with services interoperability, a draft standard proposal, IEEE Learning Technology Systems Architecture (LTSA) [7] specifies a "high level architecture for information technologysupported learning, education, and training systems". However, its focus is to identify the objectives of human activities and computer processes and their involved categories of knowledge. It does not
provide a generic view of software components and services of educational and training systems. In this paper we present a generic architecture for educational and training systems. Then this architecture is discussed according to web technology. With this discussion, we expect to help understanding and clarifying approaches of existing educational and training systems; assist researchers to develop more innovative web systems; and assist software and hardware developers to improve commercial educational and training products based on the web technology.

Along with the development of economy and information technology and growth of the people's health demand, China's healthcare informationization has undergone three stages as many countries[1]. Adoption of appropriate technologies to support health delivery in China is driven in part by national strategies for electronic health records. Nurses, as the largest sector of the workforce, are the greatest users of ICT in the health industry. To use the available technology to its potential, provision of access alone is not sufficient; skill or ability must be adequate. As has been concluded by many researchers, skills must be built into undergraduate nursing curricula so that graduates possess the necessary basic computer skills and specific knowledge of available resources[2, 3]. Furthermore, once employed, nurses need to provide accessible and relevant education and training to maintain and build upon these skills and knowledge[4]. Several reports exist suggesting that Chinese nurses have a deficit of skills in ICT and this compromises the use of the technology and the benefits that are offered $[4,5]$. The study reported herein was undertaken in 2009 by an independent research group commissioned by the Information Quality Lab (IQL) [6] with funding from the National Natural Science Foundation of China. It is the first to capture a national picture of ICT in the nursing profession in China. Access to computers, knowledge and use of ICT, barriers to ICT use, training and education and ICT support were all determined. The results are intended to support the development of national strategies to meet the needs of nurses. This paper reports on past training and education, and future training requirements.

A. Infrastructure for Education and Training

E-learning is expanding worldwide. A recent study suggests that corporate training will

Akash K Singh / International Journal of Engineering Research and Applications
 (IJERA) ISSN: 2248-9622 \quad www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.434-461

grow from $\$ 2.2$ billion to $\$ 18.5$ billion by 2005 . Due to shrinking budgets and decreased interest in travel since Sept. 11, 2001, meetings and training sessions, which depend on airplane flights, hotel reservations and time away from home, are being replaced by elearning. For example, Cisco Systems uses elearning to work with sales force. McDonald's trainers logon to Hamburger University for additional training and updated information. Circuit City, with its 600 stores and approximately 50,000 employees, uses customized courses that they say are "short, fun, flexible, interactive and instantly applicable on the job." The infrastructure for online education and training in government requires creation of a learning center [11]. A learning center must serve as the focal point for all corporate/government training and learning activities [6].

B. Information Technologies for Education and Training

The currently used support systems or tools in elearning programs can be divided into two broad categories: (1) Traditional tools: which include, but not limited to, videotape (S-VHS), cable/public television, satellite video conferencing, teleconferencing, whiteboard; and (2) Computerassisted and network tools: which include, but not limited to, CD-ROM titles, Web browser, chat room, real player, quicktime, Windows media player, broadband video conferencing, WebCT, Blackboard, LearningSpace. There are several technologies used for e-learning, some of the most commonly used ones are briefly summarized below. They include, among others, audio, video (instructional TV), computer, wireless, intelligent tutoring system, courseware, streaming video, virtual reality, and tele-immersion technologies. Audio technology is the simplest of the technologies. Audio-graphics technology combines audio such as the telephone and data from computers. It is also known as document conferencing or whiteboard conferencing [9]. Participants can write or type messages that can be seen by the group while audio conferencing at the same time. Equipment can include a computer, a modem, a mouse, graphics tablet, a scanner, and a camera. The voice and data are transmitted over a telephone line. The cost of this equipment can range from $\$ 500$ to $\$ 50,000$ [9]. Video technologies are the most traditional of the technologies and include interactive television or ITV courses. These courses can be synchronous or asynchronous. ITV courses film the instructor and broadcast the class via satellite or microwave to another location. If the course is taped, the tapes can be checked out and viewed later by the participants. Computer technologies are the newest technologies and encompass a wide range of technologies that include computer conferencing, email, group conferencing systems, groupware, and the Internet. Internet
conferencing can transmit audio and video using an Internet connection [3]. There are several packages for conferencing such as Netscape Communicator Conference, which has whiteboard and audio conferencing features. Microsoft NetMeeting has chat, audio and video conferencing, a whiteboard, and file transfers. The basic equipment needed to run these types of software is a computer with a sound card, a video capture card, and at least a 56 K modem connection. The use of wireless technology to connect to the Internet is gaining popularity rapidly due its flexibility. Cornell University started using wireless on its campus recently. To use the service one needs to have a wireless card installed in their laptop. The service is also compatible with integrated cards in laptops, such as the Airport card in Macintosh Powerbooks [13]. Carnegie Mellon University has been using wireless technology for over two years. More than 400 wireless access points are provided throughout its campus [8]. The growth of wireless computing has also initiated the Global Wireless Education Consortium (GWEC), a collaboration of wireless industry companies and academic institutions. GWEC is focused on expanding wireless technology in two- and four-year academic institutions [8].

II. Virtual and ONLINE EDUCATION AND TRAIINING

The 3rd layer of WTF is by school VLE, which is basically used in school based research and training. School VLE can provide learning process data to training center, and realizes the data connection between training center and each school. Trainers can integrate all possible training resources through school VLE, and they can also exchange ideas on website, do research and consultation, which makes by school training more efficient, open and tailor made; meanwhile, it realizes the cooperation and communication between different schools, and makes it earlier to seek for help from outstanding teachers and trainers. Since it is applying 100% free policy, each school can also download and upload from project portal website.

A. Network Architecture

We consider the scenario in which students access their on-line courseware via a broadband network as in Figure 1. Students, I... M, work at personal computers, leaming by executing OLET software (the courseware), which has been downloaded from the OLET servers, 1 ... N. The latter are typically located in educational institutions, and students obtain rights of access (passwords) to the courseware by enrolling in courses I subjects. The internet communications supporting this educational methodology involve A public domain broadband high-speed digital network, typically at gigabit per second rates, and currently envisaged as being Asynchronous Transfer Mode (ATM) based

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
[6]. The servers are connected to the ATM network via high-speed digital links, labeled S, and typically include Local Area Networks (LANs) and Metropolitan Area Networks (MANS). Further highspeed links, labeled D, feed Distribution Points tolfrom the ATM network. These distribution points, which may he transmission towers for wireless distribution, or fibre to coaxial cabinets, for Hybrid Fibre Coax (HEC) distribution [7, 8, 91, are where the signals delivered to I from homes are multiplexed. Transmission between the Clients and the distribution points, the C links, will be by some appropriate modems, and may well be unbalanced, i.e. have greater capacity in the server to home direction (downloads) than in the reverse direction [91. The S and D links will typically be provided on high capacity ATM fibres, which are economic in such highly shared links. The C links however serve only one client, and so will normally not be fibre, due to cost considerations. Thus the C links will typically he of limited capacity and may involve shared media with a joint capacity limit, e.g. as in broadband wireless [lo] or HFC trees [7] or XDSL [7]. The capacity limitations of the C links, and the characteristics of ATM networks at high traffic loads, must therefore be considered in the design of OLET courseware. In addition to the OLET traffic, and not shown in Figure 1, are all of the other services that the ATM network will also be conveying. Thus, as well as the OLET traffic, there will be various multi-service, multimedia, multiclient traffic flowing
through the ATM network, and the latter will sometimes impact on the OLET services, and vice versa.

B. Standard Process and Traffic Deman Models

Typically the student (client) dials the server, logs in, and then starts or resumes a module from some courseware. In the instructional process, 'doing a subject' consists of working through a number of 'Modules'; auxiliary communication, such as with tutors and administrators, is not considered, for it is assumed to constitute a negligible traffic demand when compared to the traffic demands for downloading the modules. After an initial setup period, in which there is some hidirectional data transfers to supervise the student's learning experience, when the student selects the next element of a lesson, the client sends a 'download next element' request to a server, thereby initiating the transfer of the data block(s) required for the next element of the interactive lesson. The server will attempt to deliver the data blocks to the client, and thus the transmission of OLET lessons predominantly consists of transmitting bursts of packets (ATM cells), in which the burst duration and spacing will be stochastic.We model the data transmission involved in such internet delivered OLET. The model consists of three levels of timing
diagram, involving 'Download Data Bursts', 'Lessons', and 'Study Sittings', as defined below.

Download Data Bursts (DDB): These are bursts of data that are sent to the client, (usually) corresponding to one interactive screen I module.

The DDB Duration is assumed to be made up of a uniformly distributed number of ATM cells ranging from 10000 to 50000 , corresponding to DDB file sizes of 0.5 to 2.5 Mbytes. The DDB Interval is assumed to be exponentially distributed with a mean 3 minutes.

We consider the following anycast field equations defined over an open bounded piece of network and lor feature space $\Omega \subset R^{d}$. They describe the dynamics of the mean anycast of each of p node populations.

$$
\left\{\begin{array}{cc}
\left(\frac{d}{d t}+l_{i}\right) V_{i}(t, r)=\sum_{j=1}^{p} \int_{\Omega} J_{i j}(r, \bar{r}) S\left[\left(V_{j}\left(t-\tau_{i j}(r, \bar{r}), \bar{r}\right)-h_{\mid j}\right)\right] d \bar{r} \tag{1}\\
+I_{i}^{e x t}(r, t), & t \geq 0,1 \leq i \leq p, \\
V_{i}(t, r)=\phi_{i}(t, r) & t \in[-T, 0]
\end{array}\right.
$$

We give an interpretation of the various parameters and functions that appear in (1), Ω is finite piece of nodes and/or feature space and is represented as an open bounded set of R^{d}. The vector r and \bar{r} represent points in Ω. The function $S: R \rightarrow(0,1)$ is the normalized sigmoid function:

$$
\begin{equation*}
S(z)=\frac{1}{1+e^{-z}} \tag{2}
\end{equation*}
$$

It describes the relation between the input rate v_{i} of population i as a function of the packets potential, for example, $V_{i}=v_{i}=S\left[\sigma_{i}\left(V_{i}-h_{i}\right)\right]$. We note V the $p-$ dimensional vector $\left(V_{1}, \ldots, V_{p}\right)$. The p function $\phi_{i}, i=1, \ldots, p$, represent the initial conditions, see below. We note ϕ the p-dimensional vector $\left(\phi_{1}, \ldots, \phi_{p}\right)$. The p function $I_{i}^{\text {ext }}, i=1, \ldots, p$, represent external factors from other network areas. We note $I^{\text {ext }}$ the $p-$ dimensional vector $\left(I_{1}^{e x t}, \ldots, I_{p}^{\text {ext }}\right)$. The $p \times p$ matrix of functions $J=\left\{J_{i j}\right\}_{i, j=1, \ldots, p}$ represents the connectivity between populations i and j, see below. The p real values $h_{i}, i=1, \ldots, p$, determine the threshold of activity for each population, that is, the value of the nodes potential

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
corresponding to 50% of the maximal activity. The p real positive values $\sigma_{i}, i=1, \ldots, p$, determine the slopes of the sigmoids at the origin. Finally the p real positive values $l_{i}, i=1, \ldots, p$, determine the speed at which each anycast node potential decreases exponentially toward its real value. We also introduce the function $S: R^{p} \rightarrow R^{p}$, defined by $\left.\quad S(x)=\left[S\left(\sigma_{1}\left(x_{1}-h_{1}\right)\right), \ldots, S\left(\sigma_{p}-h_{p}\right)\right)\right]$, and the diagonal $p \times p$ matrix $L_{0}=\operatorname{diag}\left(l_{1}, \ldots, l_{p}\right)$. Is the intrinsic dynamics of the population given by the linear response of data transfer. $\left(\frac{d}{d t}+l_{i}\right)$ is replaced by $\left(\frac{d}{d t}+l_{i}\right)^{2}$ to use the alpha function response. We use $\left(\frac{d}{d t}+l_{i}\right)$ for simplicity although our analysis applies to more general intrinsic dynamics. For the sake, of generality, the propagation delays are not assumed to be identical for all populations, hence they are described by a matrix $\tau(r, \bar{r})$ whose element $\tau_{i j}(r, \bar{r})$ is the propagation delay between population j at \bar{r} and population i at r. The reason for this assumption is that it is still unclear from anycast if propagation delays are independent of the populations. We assume for technical reasons that τ is continuous, that is $\tau \in C^{0}\left(\bar{\Omega}^{2}, R_{+}^{p \times p}\right)$. Moreover packet data indicate that τ is not a symmetric function i.e., $\tau_{i j}(r, \bar{r}) \neq \tau_{i j}(\bar{r}, r)$, thus no assumption is made about this symmetry unless otherwise stated. In order to compute the righthand side of (1), we need to know the node potential factor V on interval $[-T, 0]$. The value of T is obtained by considering the maximal delay:

$$
\begin{equation*}
\tau_{m}=\max _{i, j(r, r \in \Omega \times \bar{\Omega})} \tau_{i, j}(r, \bar{r}) \tag{3}
\end{equation*}
$$

Hence we choose $T=\tau_{m}$

C. Mathematical Framework

A convenient functional setting for the non-delayed packet field equations is to use the space $F=L^{2}\left(\Omega, R^{p}\right)$ which is a Hilbert space endowed with the usual inner product:

$$
\begin{equation*}
\langle V, U\rangle_{F}=\sum_{i=1}^{p} \int_{\Omega} V_{i}(r) U_{i}(r) d r \tag{1}
\end{equation*}
$$

To give a meaning to (1), we defined the history space $\quad C=C^{0}\left(\left[-\tau_{m}, 0\right], F\right) \quad$ with $\|\phi\|=\sup _{t \in\left[-\tau_{m}, 0\right]}\|\phi(t)\| F$, which is the Banach
phase space associated with equation (3). Using the notation $V_{t}(\theta)=V(t+\theta), \theta \in\left[-\tau_{m}, 0\right]$, we write (1) as

$$
\left\{\begin{array}{c}
V(t)=-L_{0} V(t)+L_{1} S\left(V_{t}\right)+I^{e x t}(t) \tag{2}\\
V_{0}=\phi \in C
\end{array}\right.
$$

Where

$$
\left\{\begin{array}{c}
L_{1}: C \rightarrow F \\
\phi \rightarrow \int_{\Omega} J(., \bar{r}) \phi(\bar{r},-\tau(., \bar{r})) d \bar{r}
\end{array}\right.
$$

Is the linear continuous operator satisfying $\left\|L_{1}\right\| \leq\|J\|_{L^{2}\left(\Omega^{2}, R^{p \times p}\right)}$. Notice that most of the papers on this subject assume Ω infinite, hence requiring $\tau_{m}=\infty$.

Proposition 1.0 If the following assumptions are satisfied.

1. $J \in L^{2}\left(\Omega^{2}, R^{p \times p}\right)$,
2. The external current $I^{e x t} \in C^{0}(R, F)$,
3. $\tau \in C^{0}\left(\overline{\Omega^{2}}, R_{+}^{p \times p}\right), \sup _{\overline{\Omega^{2}}} \tau \leq \tau_{m}$.

Then for any $\phi \in C$, there exists a unique solution $V \in C^{1}([0, \infty), F) \cap C^{0}\left(\left[-\tau_{m}, \infty, F\right)\right.$ to (3)
Notice that this result gives existence on R_{+}, finitetime explosion is impossible for this delayed differential equation. Nevertheless, a particular solution could grow indefinitely, we now prove that this cannot happen.

D. Boundedness of Solutions

A valid model of neural networks should only feature bounded packet node potentials.

Theorem 1.0 All the trajectories are ultimately bounded by the same constant R if $I \equiv \max _{t \in R^{+}}\left\|I^{e x t}(t)\right\|_{F}<\infty$.
Proof :Let us defined $f: R \times C \rightarrow R^{+}$as $f\left(t, V_{t}\right) \stackrel{\text { def }}{=}\left\langle-L_{0} V_{t}(0)+L_{1} S\left(V_{t}\right)+I^{\text {ext }}(t), V(t)\right\rangle_{F}=\frac{1}{2} \frac{d\|V\|_{F}^{2}}{d t}$

We note $l=\min _{i=1, \ldots p} l_{i}$
$f\left(t, V_{t}\right) \leq-l\|V(t)\|_{F}^{2}+\left(\sqrt{p|\Omega|}\|J\|_{F}+I\right)\|V(t)\|_{F}$
Thus, if
(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
$\|V(t)\|_{F} \geq 2 \frac{\sqrt{p|\Omega|} \cdot\|J\|_{F}+I}{l} \stackrel{\text { def }}{=} R, f\left(t, V_{t}\right) \leq-\frac{l R^{2}}{2} \stackrel{\text { def }}{=}-\delta<0$
Let us show that the open route of F of center 0 and radius R, B_{R}, is stable under the dynamics of equation. We know that $V(t)$ is defined for all $t \geq 0 s$ and that $f<0$ on ∂B_{R}, the boundary of B_{R}. We consider three cases for the initial condition
V_{0}. If $\left\|V_{0}\right\|_{C}<R \quad$ and set
$T=\sup \left\{t \mid \forall s \in[0, t], V(s) \in \overline{B_{R}}\right\} . \quad$ Suppose that $T \in R$, then $V(T)$ is defined and belongs to $\overline{B_{R}}$, the closure of B_{R}, because $\overline{B_{R}}$ is closed, in effect to ∂B_{R}, we also have $\left.\frac{d}{d t}\|V\|_{F}^{2}\right|_{t=T}=f\left(T, V_{T}\right) \leq-\delta<0 \quad$ because $V(T) \in \partial B_{R}$. Thus we deduce that for $\varepsilon>0$ and small enough, $V(T+\varepsilon) \in \overline{B_{R}}$ which contradicts the definition of T . Thus $T \notin R$ and $\overline{B_{R}}$ is stable. Because $\mathrm{f}<0$ on $\partial B_{R}, V(0) \in \partial B_{R}$ implies that $\forall t>0, V(t) \in B_{R}$. Finally we consider the case $V(0) \in C \overline{B_{R}}$. Suppose that $\forall t>0, V(t) \notin \overline{B_{R}}, \quad$ then $\forall t>0, \frac{d}{d t}\|V\|_{F}^{2} \leq-2 \delta, \quad$ thus $\quad\|V(t)\|_{F} \quad$ is monotonically decreasing and reaches the value of R in finite time when $V(t)$ reaches ∂B_{R}. This contradicts our assumption. Thus $\exists T>0 \mid V(T) \in B_{R}$.

Proposition 1.1 : Let s and t be measured simple functions on X. for $E \varepsilon M$, define
$\phi(E)=\int_{E} s d \mu$
Then ϕ is a measure on M.
$\int_{X}(s+t) d \mu=\int_{X} s d \mu+\int_{X} t d \mu$
Proof: If s and if E_{1}, E_{2}, \ldots are disjoint members of M whose union is E, the countable additivity of μ shows that

$$
\begin{aligned}
\phi(E) & =\sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap E\right)=\sum_{i=1}^{n} \alpha_{i} \sum_{r=1}^{\infty} \mu\left(A_{i} \cap E_{r}\right) \\
& =\sum_{r=1}^{\infty} \sum_{i=1}^{n} \alpha_{i} \mu\left(A_{i} \cap E_{r}\right)=\sum_{r=1}^{\infty} \phi\left(E_{r}\right)
\end{aligned}
$$

Also, $\varphi(\phi)=0$, so that φ is not identically ∞.
Next, let s be as before, let $\beta_{1}, \ldots, \beta_{m}$ be the distinct values of t , and let $B_{j}=\left\{x: t(x)=\beta_{j}\right\}$ If $E_{i j}=A_{i} \cap B_{j}$, the $\int_{E_{i j}}(s+t) d \mu=\left(\alpha_{i}+\beta_{j}\right) \mu\left(E_{i j}\right)$
and $\quad \int_{E_{i j}} s d \mu+\int_{E_{i j}} t d \mu=\alpha_{i} \mu\left(E_{i j}\right)+\beta_{j} \mu\left(E_{i j}\right)$ Thus (2) holds with $E_{i j}$ in place of X. Since X is the disjoint union of the sets $E_{i j}(1 \leq i \leq n, 1 \leq j \leq m)$, the first half of our proposition implies that (2) holds.

Theorem 1.1: If K is a compact set in the plane whose complement is connected, if f is a continuous complex function on K which is holomorphic in the interior of, and if $\varepsilon>0$, then there exists a polynomial P such that $|f(z)=P(z)|<\varepsilon$ for all $z \varepsilon K$. If the interior of K is empty, then part of the hypothesis is vacuously satisfied, and the conclusion holds for every $f \varepsilon C(K)$. Note that K need to be connected.
Proof: By Tietze's theorem, f can be extended to a continuous function in the plane, with compact support. We fix one such extension and denote it again by f. For any $\delta>0$, let $\omega(\delta)$ be the supremum of the numbers $\left|f\left(z_{2}\right)-f\left(z_{1}\right)\right|$ Where z_{1} and z_{2} are subject to the condition $\left|z_{2}-z_{1}\right| \leq \delta$. Since f is uniformly continous, we have $\lim _{\delta \rightarrow 0} \omega(\delta)=0 \quad$ (1) From now on, δ will be fixed. We shall prove that there is a polynomial P such that

$$
\begin{equation*}
|f(z)-P(z)|<10,000 \omega(\delta) \quad(z \varepsilon K) \tag{2}
\end{equation*}
$$

By (1), this proves the theorem. Our first objective is the construction of a function $\Phi \varepsilon C_{c}^{\prime}\left(R^{2}\right)$, such that for all z

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

$$
\begin{gather*}
|f(z)-\Phi(z)| \leq \omega(\delta) \tag{3}\\
|(\partial \Phi)(z)|<\frac{2 \omega(\delta)}{\delta} \tag{4}\\
\text { And } \\
\Phi(z)=-\frac{1}{\pi} \iint_{X} \frac{(\partial \Phi)(\zeta)}{\zeta-z} d \zeta d \eta \quad(\zeta=\xi+i \eta) \tag{5}
\end{gather*}
$$

Where X is the set of all points in the support of Φ whose distance from the complement of K does not δ. (Thus X contains no point which is "far within" K.) We construct Φ as the convolution of f with a smoothing function A. Put $a(r)=0$ if $r>\delta$, put
$a(r)=\frac{3}{\pi \delta^{2}}\left(1-\frac{r^{2}}{\delta^{2}}\right)^{2} \quad(0 \leq r \leq \delta)$,
And define

$$
\begin{equation*}
A(z)=a(|z|) \tag{7}
\end{equation*}
$$

For all complex z. It is clear that $A \varepsilon C_{c}^{\prime}\left(R^{2}\right)$. We claim that

$$
\begin{align*}
& \iint_{R^{s}} A=1 \tag{8}\\
& \iint_{R^{2}} \partial A=0 \tag{9}\\
& \iint_{R^{3}}|\partial A|=\frac{24}{15 \delta}<\frac{2}{\delta},
\end{align*}
$$

The constants are so adjusted in (6) that (8) holds. (Compute the integral in polar coordinates), (9) holds simply because A has compact support. To compute (10), express ∂A in polar coordinates, and note that $\partial A / \partial \theta=0$,

$$
\partial A / \partial r=-a
$$

Now define

$$
\begin{equation*}
\Phi(z)=\iint_{R^{2}} f(z-\zeta) A d \xi d \eta=\iint_{R^{2}} A(z-\zeta) f(\zeta) d \xi d \eta \tag{11}
\end{equation*}
$$

Since f and A have compact support, so does Φ. Since

$$
\begin{align*}
& \Phi(z)-f(z) \\
& =\iint_{R^{2}}[f(z-\zeta)-f(z)] A(\xi) d \xi d \eta \tag{12}
\end{align*}
$$

And $A(\zeta)=0$ if $|\zeta|>\delta$, (3) follows
from (8). The difference quotients of A converge boundedly to the corresponding partial derivatives,
since $A \varepsilon C_{c}^{\prime}\left(R^{2}\right)$. Hence the last expression in (11) may be differentiated under the integral sign, and we obtain

$$
\begin{align*}
(\partial \Phi)(z) & =\iint_{R^{2}}(\overline{\partial A})(z-\zeta) f(\zeta) d \xi d \eta \\
& =\iint_{R^{2}} f(z-\zeta)(\partial A)(\zeta) d \xi d \eta \\
& =\iint_{R^{2}}[f(z-\zeta)-f(z)](\partial A)(\zeta) d \xi d \eta \tag{13}
\end{align*}
$$

The last equality depends on (9). Now (10) and (13) give (4). If we write (13) with Φ_{x} and Φ_{y} in place of $\partial \Phi$, we see that Φ has continuous partial derivatives, if we can show that $\partial \Phi=0$ in G, where G is the set of all $z \varepsilon K$ whose distance from the complement of K exceeds δ. We shall do this by showing that

$$
\begin{equation*}
\Phi(z)=f(z) \quad(z \varepsilon G) \tag{14}
\end{equation*}
$$

Note that $\partial f=0$ in G, since f is holomorphic there. Now if $z \varepsilon G$, then $z-\zeta$ is in the interior of K for all ζ with $|\zeta|<\delta$. The mean value property for harmonic functions therefore gives, by the first equation in (11),

$$
\begin{align*}
\Phi(z) & =\int_{0}^{\delta} a(r) r d r \int_{0}^{2 \pi} f\left(z-r e^{i \theta}\right) d \theta \\
& =2 \pi f(z) \int_{0}^{\delta} a(r) r d r=f(z) \iint_{R^{2}} A=f(z) \tag{15}
\end{align*}
$$

For all $z \in G$, we have now proved (3), (4), and (5) The definition of X shows that X is compact and that X can be covered by finitely many open discs D_{1}, \ldots, D_{n}, of radius 2δ, whose centers are not in K. Since $S^{2}-K$ is connected, the center of each D_{j} can be joined to ∞ by a polygonal path in $S^{2}-K$. It follows that each D_{j} contains a compact connected set E_{j}, of diameter at least 2δ, so that $S^{2}-E_{j}$ is connected and so that $K \cap E_{j}=\phi$. with $r=2 \delta$. There are functions $g_{j} \varepsilon H\left(S^{2}-E_{j}\right)$ and constants b_{j} so that the inequalities.
(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
$\left|Q_{j}(\zeta, z)\right|<\frac{50}{\delta}$,
$\left|Q_{j}(\zeta, z)-\frac{1}{z-\zeta}\right|<\frac{4,000 \delta^{2}}{|z-\zeta|^{2}}$
Hold for $z \notin E_{j}$ and $\zeta \in D_{j}$, if
$Q_{j}(\zeta, z)=g_{j}(z)+\left(\zeta-b_{j}\right) g_{j}^{2}(z)$
Let Ω be the complement of $E_{1} \cup \ldots \cup E_{n}$. Then Ω is an open set which contains K. Put $X_{1}=X \cap D_{1}$
$X_{j}=\left(X \cap D_{j}\right)-\left(X_{1} \cup \ldots \cup X_{j-1}\right)$, $2 \leq j \leq n$,
Define

$$
\begin{equation*}
R(\zeta, z)=Q_{j}(\zeta, z) \quad\left(\zeta \varepsilon X_{j}, z \varepsilon \Omega\right) \tag{19}
\end{equation*}
$$

And
$F(z)=\frac{1}{\pi} \iint_{X}(\partial \Phi)(\zeta) R(\zeta, z) d \zeta d \eta$
$(z \varepsilon \Omega)$
Since,
$F(z)=\sum_{j=1} \frac{1}{\pi} \iint_{X_{i}}(\partial \Phi)(\zeta) Q_{j}(\zeta, z) d \xi d \eta$,
(18) shows that F is a finite linear combination of the functions g_{j} and g_{j}^{2}. Hence $F \varepsilon H(\Omega)$. By (20), (4), and (5) we have

$$
\begin{aligned}
& \left.|F(z)-\Phi(z)|<\frac{2 \omega(\delta)}{\pi \delta} \iint_{X} \right\rvert\, R(\zeta, z) \\
& \left.-\frac{1}{z-\zeta} \right\rvert\, d \xi d \eta \quad(z \varepsilon \Omega)
\end{aligned}
$$

Observe that the inequalities (16) and (17) are valid with R in place of Q_{j} if $\zeta \varepsilon X$ and $z \varepsilon \Omega$.
Now fix $z \varepsilon \Omega$., put $\zeta=z+\rho e^{i \theta}$, and estimate the integrand in (22) by (16) if $\rho<4 \delta$, by (17) if $4 \delta \leq \rho$. The integral in (22) is then seen to be less than the sum of

$$
\begin{equation*}
2 \pi \int_{0}^{4 \delta}\left(\frac{50}{\delta}+\frac{1}{\rho}\right) \rho d \rho=808 \pi \delta \tag{23}
\end{equation*}
$$

And
$2 \pi \int_{4 \delta}^{\infty} \frac{4,000 \delta^{2}}{\rho^{2}} \rho d \rho=2,000 \pi \delta$.
Hence (22) yields
$|F(z)-\Phi(z)|<6,000 \omega(\delta) \quad(z \varepsilon \Omega)$

Since $F \varepsilon H(\Omega), K \subset \Omega$, and $S^{2}-K$ is connected, Runge's theorem shows that F can be uniformly approximated on K by polynomials. Hence (3) and (25) show that (2) can be satisfied. This completes the proof.

Lemma 1.0: Suppose $f \varepsilon C_{c}^{\prime}\left(R^{2}\right)$, the space of all continuously differentiable functions in the plane, with compact support. Put
$\partial=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$
Then the following "Cauchy formula" holds:
$f(z)=-\frac{1}{\pi} \iint_{R^{2}} \frac{(\partial f)(\zeta)}{\zeta-z} d \xi d \eta$

$$
\begin{equation*}
(\zeta=\xi+i \eta) \tag{2}
\end{equation*}
$$

Proof: This may be deduced from Green's theorem. However, here is a simple direct proof:
Put $\varphi(r, \theta)=f\left(z+r e^{i \theta}\right), r>0, \theta$ real
If $\zeta=z+r e^{i \theta}$, the chain rule gives
$(\partial f)(\zeta)=\frac{1}{2} e^{i \theta}\left[\frac{\partial}{\partial r}+\frac{i}{r} \frac{\partial}{\partial \theta}\right] \varphi(r, \theta)$
The right side of (2) is therefore equal to the limit, as $\varepsilon \rightarrow 0$, of

$$
\begin{equation*}
-\frac{1}{2} \int_{\varepsilon}^{\infty} \int_{0}^{2 \pi}\left(\frac{\partial \varphi}{\partial r}+\frac{i}{r} \frac{\partial \varphi}{\partial \theta}\right) d \theta d r \tag{4}
\end{equation*}
$$

For each $r>0, \varphi$ is periodic in θ, with period 2π. The integral of $\partial \varphi / \partial \theta$ is therefore 0 , and (4) becomes

$$
\begin{equation*}
-\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta \int_{\varepsilon}^{\infty} \frac{\partial \varphi}{\partial r} d r=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(\varepsilon, \theta) d \theta \tag{5}
\end{equation*}
$$

As $\varepsilon \rightarrow 0, \varphi(\varepsilon, \theta) \rightarrow f(z)$ uniformly. This gives (2)

If $X^{\alpha} \in a \quad$ and $\quad X^{\beta} \in k\left[X_{1}, \ldots X_{n}\right]$, then $X^{\alpha} X^{\beta}=X^{\alpha+\beta} \in a$, and so A satisfies the condition ($*$). Conversely,
$\left(\sum_{\alpha \in A} c_{\alpha} X^{\alpha}\right)\left(\sum_{\beta \in \beth^{n}} d_{\beta} X^{\beta}\right)=\sum_{\alpha, \beta} c_{\alpha} d_{\beta} X^{\alpha+\beta}$
(finite sums),
and so if A satisfies (*), then the subspace generated by the monomials $X^{\alpha}, \alpha \in a$, is an ideal. The proposition gives a classification of the
(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
monomial ideals in $k\left[X_{1}, \ldots X_{n}\right]$: they are in one to one correspondence with the subsets A of \square^{n} satisfying $(*)$. For example, the monomial ideals in $k[X]$ are exactly the ideals $\left(X^{n}\right), n \geq 1$, and the zero ideal (corresponding to the empty set A). We write $\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ for the ideal corresponding to A (subspace generated by the $X^{\alpha}, \alpha \in a$).

LEMMA 1.1. Let S be a subset of \square^{n}. The the ideal a generated by $X^{\alpha}, \alpha \in S$ is the monomial ideal corresponding to
$A=\left\{\beta \in \square^{n} \mid \beta-\alpha \in \square^{n}, \quad\right.$ some $\left.\alpha \in S\right\}$
Thus, a monomial is in a if and only if it is divisible by one of the $X^{\alpha}, \alpha \in S$
PROOF. Clearly A satisfies $(*)$, and $a \subset\left\langle X^{\beta} \mid \beta \in A\right\rangle$. Conversely, if $\beta \in A$, then $\beta-\alpha \in \square^{n} \quad$ for \quad some $\quad \alpha \in S \quad$, and $X^{\beta}=X^{\alpha} X^{\beta-\alpha} \in a$. The last statement follows from the fact that $X^{\alpha} \mid X^{\beta} \Leftrightarrow \beta-\alpha \in \square^{n}$. Let $A \subset \square^{n}$ satisfy $(*)$. From the geometry of A, it is clear that there is a finite set of elements $S=\left\{\alpha_{1}, \ldots \alpha_{s}\right\} \quad$ of A such that $A=\left\{\beta \in \square^{n} \mid \beta-\alpha_{i} \in \square^{2}\right.$, some $\left.\alpha_{i} \in S\right\}$ (The $\alpha_{i}{ }^{\prime} s$ are the corners of A) Moreover, $a=\left\langle X^{\alpha} \mid \alpha \in A\right\rangle$ is generated by the monomials $X^{\alpha_{i}}, \alpha_{i} \in S$

DEFINITION 1.0. For a nonzero ideal a in $k\left[X_{1}, \ldots, X_{n}\right]$, we let $(L T(a))$ be the ideal generated by
$\{L T(f) \mid f \in a\}$
LEMMA 1.2 Let a be a nonzero ideal in $k\left[X_{1}, \ldots, X_{n}\right]$; then $(L T(a))$ is a monomial ideal, and it equals $\left(L T\left(g_{1}\right), \ldots, L T\left(g_{n}\right)\right)$ for some $g_{1}, \ldots, g_{n} \in a$.
PROOF. Since $(L T(a))$ can also be described as the ideal generated by the leading monomials (rather than the leading terms) of elements of a.

THEOREM 1.2. Every ideal a in $k\left[X_{1}, \ldots, X_{n}\right]$ is finitely generated; more precisely, $a=\left(g_{1}, \ldots, g_{s}\right)$ where g_{1}, \ldots, g_{s} are any elements of a whose leading terms generate $L T(a)$
PROOF. Let $f \in a$. On applying the division algorithm, we find $f=a_{1} g_{1}+\ldots+a_{s} g_{s}+r, \quad a_{i}, r \in k\left[X_{1}, \ldots, X_{n}\right]$, where either $r=0$ or no monomial occurring in it is divisible by any $L T\left(g_{i}\right)$. But $r=f-\sum a_{i} g_{i} \in a \quad, \quad$ and \quad therefore $L T(r) \in L T(a)=\left(L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right) \quad$, implies that every monomial occurring in r is divisible by one in $L T\left(g_{i}\right)$. Thus $r=0$, and $g \in\left(g_{1}, \ldots, g_{s}\right)$.

DEFINITION 1.1. A finite subset

$S=\left\{g_{1}, \mid \ldots, g_{s}\right\}$ of an ideal a is a standard (
(Gröbner) bases for a if $\left(L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right)=L T(a)$. In other words, S is a standard basis if the leading term of every element of a is divisible by at least one of the leading terms of the g_{i}.

THEOREM 1.3 The ring $k\left[X_{1}, \ldots, X_{n}\right]$ is Noetherian i.e., every ideal is finitely generated.

PROOF. For $n=1, k[X]$ is a principal ideal domain, which means that every ideal is generated by single element. We shall prove the theorem by induction on n. Note that the obvious map $k\left[X_{1}, \ldots X_{n-1}\right]\left[X_{n}\right] \rightarrow k\left[X_{1}, \ldots X_{n}\right] \quad$ is \quad an isomorphism - this simply says that every polynomial f in n variables $X_{1}, \ldots X_{n}$ can be expressed uniquely as a polynomial in X_{n} with coefficients in $k\left[X_{1}, \ldots, X_{n}\right]$:
$f\left(X_{1}, \ldots X_{n}\right)=a_{0}\left(X_{1}, \ldots X_{n-1}\right) X_{n}^{r}+\ldots+a_{r}\left(X_{1}, \ldots X_{n-1}\right)$
Thus the next lemma will complete the proof
LEMMA 1.3. If A is Noetherian, then so also is $A[X]$
PROOF. For a polynomial
$f(X)=a_{0} X^{r}+a_{1} X^{r-1}+\ldots+a_{r}, \quad a_{i} \in A, \quad a_{0} \neq 0$,

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
r is called the degree of f, and a_{0} is its leading coefficient. We call 0 the leading coefficient of the polynomial 0 . Let a be an ideal in $A[X]$. The leading coefficients of the polynomials in a form an ideal a^{\prime} in A, and since A is Noetherian, a^{\prime} will be finitely generated. Let g_{1}, \ldots, g_{m} be elements of a whose leading coefficients generate a^{\prime}, and let r be the maximum degree of g_{i}. Now let $f \in a$, and suppose f has degree $s>r$, say, $f=a X^{s}+\ldots$ Then $a \in a^{\prime}$, and so we can write $a=\sum b_{i} a_{i}, \quad b_{i} \in A$,
$a_{i}=$ leading coefficient of g_{i}
Now
$f-\sum b_{i} g_{i} X^{s-r_{i}}, \quad r_{i}=\operatorname{deg}\left(g_{i}\right)$, has degree $<\operatorname{deg}(f)$. By continuing in this way, we find that $f \equiv f_{t} \quad \bmod \left(g_{1}, \ldots g_{m}\right) \quad$ With $\quad f_{t} \quad$ a polynomial of degree $t<r$. For each $d<r$, let a_{d} be the subset of A consisting of 0 and the leading coefficients of all polynomials in a of degree d; it is again an ideal in A. Let $g_{d, 1}, \ldots, g_{d, m_{d}}$ be polynomials of degree d whose leading coefficients generate a_{d}. Then the same argument as above shows that any polynomial f_{d} in a of degree d can be written $f_{d} \equiv f_{d-1} \quad \bmod \left(g_{d, 1}, \ldots g_{d, m_{d}}\right) \quad$ With $\quad f_{d-1}$ of degree $\leq d-1$. On applying this remark repeatedly we find that $f_{t} \in\left(g_{r-1,1}, \ldots g_{r-1, m_{r-1}}, \ldots g_{0,1}, \ldots g_{0, m_{0}}\right)$ Hence
$f_{t} \in\left(g_{1}, \ldots g_{m} g_{r-1,1}, \ldots g_{r-1, m_{r-1}}, \ldots, g_{0,1}, \ldots, g_{0, m_{0}}\right)$
and so the polynomials $g_{1}, \ldots, g_{0, m_{0}}$ generate a
One of the great successes of category theory in computer science has been the development of a "unified theory" of the constructions underlying denotational semantics. In the untyped λ-calculus, any term may appear in the function position of an application. This means that a model D of the λ-calculus must have the property that given a term t whose interpretation is $d \in D$, Also, the interpretation of a functional abstraction like $\lambda x . x$ is most conveniently defined as a function from D to D, which must then be regarded as an element of D. Let
$\psi:[D \rightarrow D] \rightarrow D$ be the function that picks out elements of D to represent elements of $[D \rightarrow D]$ and $\phi: D \rightarrow[D \rightarrow D]$ be the function that maps elements of D to functions of D. Since $\psi(f)$ is intended to represent the function f as an element of D, it makes sense to require that $\phi(\psi(f))=f$, that is, $\psi o \psi=i d_{[D \rightarrow D]} \quad$ Furthermore, we often want to view every element of D as representing some function from D to D and require that elements representing the same function be equal - that is
$\psi(\varphi(d))=d$
or
$\psi o \phi=i d_{D}$
The latter condition is called extensionality. These conditions together imply that ϕ and ψ are inverses--- that is, D is isomorphic to the space of functions from D to D that can be the interpretations of functional abstractions: $D \cong[D \rightarrow D]$. Let us suppose we are working with the untyped λ-calculus, we need a solution ot the equation $D \cong A+[D \rightarrow D]$, where A is some predetermined domain containing interpretations for elements of C. Each element of D corresponds to either an element of A or an element of $[D \rightarrow D]$, with a tag. This equation can be solved by finding least fixed points of the function $F(X)=A+[X \rightarrow X]$ from domains to domains --- that is, finding domains X such that $X \cong A+[X \rightarrow X]$, and such that for any domain Y also satisfying this equation, there is an embedding of X to Y--- a pair of maps

Such that
$f^{R} o f=i d_{X}$
$f o f^{R} \subseteq i d_{Y}$
Where $f \subseteq g$ means that
f approximates g in some ordering representing their information content. The key shift of perspective from the domain-theoretic to the more general category-theoretic approach lies in considering F not as a function on domains, but as a functor on a category of domains. Instead of a least fixed point of the function, F.

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

Definition 1.3: Let K be a category and $F: K \rightarrow K$ as a functor. A fixed point of F is a pair (A,a), where A is a K-object and $a: F(A) \rightarrow A$ is an isomorphism. A prefixed point of F is a pair (A, a), where A is a K-object and a is any arrow from $\mathrm{F}(\mathrm{A})$ to A
Definition 1.4: An ω-chain in a category \boldsymbol{K} is a diagram of the following form:
$\Delta=D_{o} \xrightarrow{f_{o}} D_{1} \xrightarrow{f_{1}} D_{2} \longrightarrow \cdots$
Recall that a cocone μ of an $\omega-$ chain Δ is a K object X and a collection of K -arrows $\left\{\mu_{i}: D_{i} \rightarrow X \mid i \geq 0\right\}$ such that $\mu_{i}=\mu_{i+1} o f_{i}$ for all $i \geq 0$. We sometimes write $\mu: \Delta \rightarrow X$ as a reminder of the arrangement of μ 's components Similarly, a colimit $\mu: \Delta \rightarrow X$ is a cocone with the property that if $v: \Delta \rightarrow X^{\prime}$ is also a cocone then there exists a unique mediating arrow $k: X \rightarrow X^{\prime}$ such that for all $i \geq 0, v_{i}=k o \mu_{i}$. Colimits of ω-chains are sometimes referred to as ω-colimits . Dually, an $\omega^{o p}$ - chain in \boldsymbol{K} is a diagram of the following form:

A cone $\mu: X \rightarrow \Delta$ of an $\omega^{o p}$ - chain Δ is a K-object X and a collection of \mathbf{K}-arrows $\left\{\mu_{i}: D_{i} \mid i \geq 0\right\}$ such that for all $i \geq 0, \mu_{i}=f_{i} o \mu_{i+1}$. An $\omega^{o p}$-limit of an $\omega^{o p}$-chain Δ is a cone $\mu: X \rightarrow \Delta$ with the property that if $v: X^{\prime} \rightarrow \Delta$ is also a cone, then there exists a unique mediating arrow $k: X^{\prime} \rightarrow X$ such that for all $i \geq 0, \mu_{i} o k=v_{i}$. We write \perp_{k} (or just \perp) for the distinguish initial object of \boldsymbol{K}, when it has one, and $\perp \rightarrow A$ for the unique arrow from \perp to each \boldsymbol{K}-object A . It is also convenient to write $\Delta^{-}=D_{1} \longrightarrow D_{2} \longrightarrow \cdots$ to denote all of Δ except D_{o} and f_{0}. By analogy, μ^{-}is $\left\{\mu_{i} \mid i \geq 1\right\}$. For the images of Δ and μ under \boldsymbol{F} we write $F(\Delta)=F\left(D_{o}\right) \xrightarrow{F\left(f_{o}\right)} F\left(D_{1}\right) \xrightarrow{F\left(f_{1}\right)} F\left(D_{2}\right) \xrightarrow{F\left(f_{2}\right)} \cdots \cdots$
and $F(\mu)=\left\{F\left(\mu_{i}\right) \mid i \geq 0\right\}$
We write F^{i} for the \boldsymbol{i}-fold iterated composition of \boldsymbol{F} that
is,
$F^{o}(f)=f, F^{1}(f)=F(f), F^{2}(f)=F(F(f))$,etc. With these definitions we can state that every
monitonic function on a complete lattice has a least fixed point:

Lemma 1.4. Let \boldsymbol{K} be a category with initial object \perp and let $F: K \rightarrow K$ be a functor. Define the $\omega-$ chain Δ by

If both $\mu: \Delta \rightarrow D$ and $F(\mu): F(\Delta) \rightarrow F(D)$ are colimits, then (D, d) is an intial F-algebra, where $d: F(D) \rightarrow D \quad$ is the mediating arrow from $F(\mu)$ to the cocone μ^{-}

Theorem 1.4 Let a DAG G given in which each node is a random variable, and let a discrete conditional probability distribution of each node given values of its parents in G be specified. Then the product of these conditional distributions yields a joint probability distribution P of the variables, and (G,P) satisfies the Markov condition.

Proof. Order the nodes according to an ancestral ordering. Let $X_{1}, X_{2}, \ldots \ldots . X_{n}$ be the resultant ordering. Next define.
$P\left(x_{1}, x_{2}, \ldots x_{n}\right)=P\left(x_{n} \mid p a_{n}\right) P\left(x_{n-1} \mid P a_{n-1}\right) \ldots$
..$P\left(x_{2} \mid p a_{2}\right) P\left(x_{1} \mid p a_{1}\right)$,
Where $P A_{i}$ is the set of parents of X_{i} of in G and $P\left(x_{i} \mid p a_{i}\right)$ is the specified conditional probability distribution. First we show this does indeed yield a joint probability distribution. Clearly, $0 \leq P\left(x_{1}, x_{2}, \ldots x_{n}\right) \leq 1$ for all values of the variables. Therefore, to show we have a joint distribution, as the variables range through all their possible values, is equal to one. To that end, Specified conditional distributions are the conditional distributions they notationally represent in the joint distribution. Finally, we show the Markov condition is satisfied. To do this, we need show for $1 \leq k \leq n$ that whenever
$P\left(p a_{k}\right) \neq 0$, if $P\left(n d_{k} \mid p a_{k}\right) \neq 0$

$$
\text { and } P\left(x_{k} \mid p a_{k}\right) \neq 0
$$

then $P\left(x_{k} \mid n d_{k}, p a_{k}\right)=P\left(x_{k} \mid p a_{k}\right)$,
Where $N D_{k}$ is the set of nondescendents of X_{k} of in G. Since $P A_{k} \subseteq N D_{k}$, we need only show $P\left(x_{k} \mid n d_{k}\right)=P\left(x_{k} \mid p a_{k}\right)$. First for a given k, order the nodes so that all and only nondescendents

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
of X_{k} precede X_{k} in the ordering. Note that this ordering depends on k, whereas the ordering in the first part of the proof does not. Clearly then

$$
N D_{k}=\left\{X_{1}, X_{2}, \ldots . X_{k-1}\right\}
$$

Let

$$
D_{k}=\left\{X_{k+1}, X_{k+2}, \ldots X_{n}\right\}
$$

follows $\sum_{d_{k}}$

We define the $m^{\text {th }}$ cyclotomic field to be the field $Q[x] /\left(\Phi_{m}(x)\right)$ Where $\Phi_{m}(x)$ is the $m^{\text {th }}$ cyclotomic polynomial. $Q[x] /\left(\Phi_{m}(x)\right)$ $\Phi_{m}(x)$ has degree $\varphi(m)$ over Q since $\Phi_{m}(x)$ has degree $\varphi(m)$. The roots of $\Phi_{m}(x)$ are just the primitive $m^{\text {th }}$ roots of unity, so the complex embeddings of $Q[x] /\left(\Phi_{m}(x)\right)$ are simply the $\varphi(m)$ maps
$\sigma_{k}: Q[x] /\left(\Phi_{m}(x)\right) \mapsto C$,
$1 \leq k \prec m,(k, m)=1, \quad$ where

$$
\sigma_{k}(x)=\xi_{m}^{k}
$$

ξ_{m} being our fixed choice of primitive $m^{\text {th }}$ root of unity. Note that $\xi_{m}^{k} \in Q\left(\xi_{m}\right)$ for every k; it follows that $Q\left(\xi_{m}\right)=Q\left(\xi_{m}^{k}\right)$ for all k relatively prime to m. In particular, the images of the σ_{i} coincide, so $Q[x] /\left(\Phi_{m}(x)\right)$ is Galois over Q. This means that we can write $Q\left(\xi_{m}\right)$ for $Q[x] /\left(\Phi_{m}(x)\right)$ without much fear of ambiguity; we will do so from now on, the identification being $\xi_{m} \mapsto x$. One advantage of this is that one can easily talk about cyclotomic fields being extensions of one another,or intersections or compositums; all of these things take place considering them as subfield of C. We now investigate some basic properties of cyclotomic fields. The first issue is whether or not they are all distinct; to determine this, we need to know which roots of unity lie in $Q\left(\xi_{m}\right)$.Note, for example, that if m is odd, then $-\xi_{m}$ is a $2 m^{\text {th }}$ root of unity. We will show that this is the only way in which one can obtain any non- $m^{\text {th }}$ roots of unity.

LEMMA 1.5 If m divides n, then $Q\left(\xi_{m}\right)$ is contained in $Q\left(\xi_{n}\right)$

PROOF. Since $\xi^{n / m}=\xi_{m}$, we have $\xi_{m} \in Q\left(\xi_{n}\right)$, so the result is clear

LEMMA 1.6 If m and n are relatively prime, then

$$
Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{n m}\right)
$$

and

$$
Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q
$$

(Recall the $Q\left(\xi_{m}, \xi_{n}\right)$ is the compositum of $Q\left(\xi_{m}\right)$ and $Q\left(\xi_{n}\right)$)

PROOF. One checks easily that $\xi_{m} \xi_{n}$ is a primitive $m n^{\text {th }}$ root of unity, so that
$Q\left(\xi_{m n}\right) \subseteq Q\left(\xi_{m}, \xi_{n}\right)$
$\left[Q\left(\xi_{m}, \xi_{n}\right): Q\right] \leq\left[Q\left(\xi_{m}\right): Q\right]\left[Q\left(\xi_{n}: Q\right]\right.$
$=\varphi(m) \varphi(n)=\varphi(m n) ;$
Since $\left[Q\left(\xi_{m n}\right): Q\right]=\varphi(m n)$; this implies that $Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{n m}\right)$ We know that $Q\left(\xi_{m}, \xi_{n}\right)$ has degree $\varphi(m n)$ over Q, so we must have

$$
\left[Q\left(\xi_{m}, \xi_{n}\right): Q\left(\xi_{m}\right)\right]=\varphi(n)
$$

and

$$
\begin{aligned}
& {\left[Q\left(\xi_{m}, \xi_{n}\right): Q\left(\xi_{m}\right)\right]=\varphi(m)} \\
& {\left[Q\left(\xi_{m}\right): Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)\right] \geq \varphi(m)}
\end{aligned}
$$

And thus that $Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q$
PROPOSITION 1.2 For any m and n

$$
Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{[m, n]}\right)
$$

And
$Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q\left(\xi_{(m, n)}\right) ;$
here $[m, n]$ and (m, n) denote the least common multiple and the greatest common divisor of m and n, respectively.

PROOF. Write $m=p_{1}^{e_{1}} \ldots \ldots p_{k}^{e_{k}}$ and $p_{1}^{f_{1}} \ldots p_{k}^{f_{k}}$ where the p_{i} are distinct primes. (We allow e_{i} or f_{i} to be zero)

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
$Q\left(\xi_{m}\right)=Q\left(\xi_{p_{1}^{q_{1}}}\right) Q\left(\xi_{p_{2}^{c_{2}}}\right) \ldots Q\left(\xi_{p_{k}^{e_{k}}}\right)$
and
$Q\left(\xi_{n}\right)=Q\left(\xi_{p_{1}^{f_{1}^{\prime}}}\right) Q\left(\xi_{p_{2}^{f_{2}^{\prime}}}\right) \ldots Q\left(\xi_{p_{k}^{f_{k}}}\right)$
Thus

$$
\begin{aligned}
& Q\left(\xi_{m}, \xi_{n}\right)=Q\left(\xi_{p_{1}^{q}}\right) \ldots \ldots . . . Q\left(\xi_{p_{2}^{k}}\right) Q\left(\xi_{p_{1}^{1}}\right) \ldots Q\left(\xi_{p_{k}^{k}}\right) \\
& =Q\left(\xi_{p_{1}^{q q}}\right) Q\left(\xi_{p_{1}{ }^{f}}\right) \ldots Q\left(\xi_{p_{k}{ }^{c_{k}}}\right) Q\left(\xi_{p_{k}{ }^{k^{k}}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =Q\left(\xi_{p_{1}}^{\left.\max \left(e_{1, f 1}\right) \ldots \ldots \ldots p_{1}^{\max \left(e_{k}, f_{k}\right.}\right)}\right) \\
& =Q\left(\xi_{[m, n]}\right) ;
\end{aligned}
$$

An entirely similar computation shows that $Q\left(\xi_{m}\right) \cap Q\left(\xi_{n}\right)=Q\left(\xi_{(m, n)}\right)$

Mutual information measures the information transferred when x_{i} is sent and y_{i} is received, and is defined as

$$
\begin{equation*}
I\left(x_{i}, y_{i}\right)=\log _{2} \frac{P\left(x_{i} / y_{i}\right)}{P\left(x_{i}\right)} \text { bits } \tag{1}
\end{equation*}
$$

In a noise-free channel, each y_{i} is uniquely connected to the corresponding x_{i}, and so they constitute an input-output pair $\left(x_{i}, y_{i}\right)$ for which

$$
P\left(x_{i} / y_{j}\right)=1 \text { and } I\left(x_{i}, y_{j}\right)=\log _{2} \frac{1}{P\left(x_{i}\right)} \quad \text { bits; }
$$

that is, the transferred information is equal to the self-information that corresponds to the input x_{i} In a very noisy channel, the output y_{i} and input x_{i} would be completely uncorrelated, and so $P\left(x_{i} / y_{j}\right)=P\left(x_{i}\right)$ and also $I\left(x_{i}, y_{j}\right)=0$; that is, there is no transference of information. In general, a given channel will operate between these two extremes. The mutual information is defined between the input and the output of a given channel. An average of the calculation of the mutual information for all input-output pairs of a given channel is the average mutual information:
$I(X, Y)=\sum_{i . j} P\left(x_{i}, y_{j}\right) I\left(x_{i}, y_{j}\right)=\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{P\left(x_{i} / y_{j}\right.}{P\left(x_{i}\right)}\right]$ bits per symbol. This calculation is done over the input and output alphabets. The average mutual information. The following expressions are useful for modifying the mutual information expression:
$P\left(x_{i}, y_{j}\right)=P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)=P\left(y_{j} / x_{i}\right) P\left(x_{i}\right)$
$P\left(y_{j}\right)=\sum_{i} P\left({ }^{y_{j}} / x_{i}\right) P\left(x_{i}\right)$
$P\left(x_{i}\right)=\sum_{i} P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)$
Then
$I(X, Y)=\sum_{i . j} P\left(x_{i}, y_{j}\right)$

$$
=\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{1}{P\left(x_{i}\right)}\right]
$$

$-\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{1}{P\left(x_{i} / y_{j}\right)}\right]$
$\sum_{i . j} P\left(x_{i}, y_{j}\right) \log _{2}\left[\frac{1}{P\left(x_{i}\right)}\right]$
$=\sum_{i}\left[P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)\right] \log _{2} \frac{1}{P\left(x_{i}\right)}$
$\sum_{i} P\left(x_{i}\right) \log _{2} \frac{1}{P\left(x_{i}\right)}=H(X)$
$I(X, Y)=H(X)-H(X / Y)$
Where $H(X / Y)=\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{1}{P\left(x_{i} / y_{j}\right)}$
is usually called the equivocation. In a sense, the equivocation can be seen as the information lost in the noisy channel, and is a function of the backward conditional probability. The observation of an output symbol y_{j} provides $H(X)-H(X / Y)$ bits of information. This difference is the mutual information of the channel. Mutual Information: Properties Since
$P\left(x_{i} / y_{j}\right) P\left(y_{j}\right)=P\left(y^{y_{j}} / x_{i}\right) P\left(x_{i}\right)$
The mutual information fits the condition
$I(X, Y)=I(Y, X)$
And by interchanging input and output it is also true that
$I(X, Y)=H(Y)-H(Y / X)$
Where
$H(Y)=\sum_{j} P\left(y_{j}\right) \log _{2} \frac{1}{P\left(y_{j}\right)}$

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

This last entropy is usually called the noise entropy. Thus, the information transferred through the channel is the difference between the output entropy and the noise entropy. Alternatively, it can be said that the channel mutual information is the difference between the number of bits needed for determining a given input symbol before knowing the corresponding output symbol, and the number of bits needed for determining a given input symbol after knowing the corresponding output symbol $I(X, Y)=H(X)-H(X / Y)$
As the channel mutual information expression is a difference between two quantities, it seems that this parameter can adopt negative values. However, and is spite of the fact that for some $y_{j}, H\left(X / y_{j}\right)$ can be larger than $H(X)$, this is not possible for the average value calculated over all the outputs:
$\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{P\left(x_{i} / y_{j}\right)}{P\left(x_{i}\right)}=\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{P\left(x_{i}, y_{j}\right)}{P\left(x_{i}\right) P\left(y_{j}\right)}$

Then

$$
-I(X, Y)=\sum_{i, j} P\left(x_{i}, y_{j}\right) \frac{P\left(x_{i}\right) P\left(y_{j}\right)}{P\left(x_{i}, y_{j}\right)} \leq 0
$$

Because this expression is of the form

$$
\sum_{i=1}^{M} P_{i} \log _{2}\left(\frac{Q_{i}}{P_{i}}\right) \leq 0
$$

The above expression can be applied due to the factor $P\left(x_{i}\right) P\left(y_{j}\right)$, which is the product of two probabilities, so that it behaves as the quantity Q_{i}, which in this expression is a dummy variable that fits the condition $\sum_{i} Q_{i} \leq 1$. It can be concluded that the average mutual information is a nonnegative number. It can also be equal to zero, when the input and the output are independent of each other. A related entropy called the joint entropy is defined as

$$
\begin{aligned}
& H(X, Y)=\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{1}{P\left(x_{i}, y_{j}\right)} \\
& =\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{P\left(x_{i}\right) P\left(y_{j}\right)}{P\left(x_{i}, y_{j}\right)} \\
& +\sum_{i, j} P\left(x_{i}, y_{j}\right) \log _{2} \frac{1}{P\left(x_{i}\right) P\left(y_{j}\right)}
\end{aligned}
$$

Theorem 1.5: Entropies of the binary erasure channel (BEC) The BEC is defined with an alphabet of two inputs and three outputs, with symbol probabilities.
$P\left(x_{1}\right)=\alpha$ and $P\left(x_{2}\right)=1-\alpha$, and transition probabilities
$P\left(y_{3} / x_{2}\right)=1-p$ and $P\left(y_{2} / x_{1}\right)=0$,
and $P\left(y_{3} / x_{1}\right)=0$
and $P\left(y_{1} / x_{2}\right)=p$
and $P\left(y_{3} / x_{2}\right)=1-p$
Lemma 1.7. Given an arbitrary restricted timediscrete, amplitude-continuous channel whose restrictions are determined by sets F_{n} and whose density functions exhibit no dependence on the state s, let n be a fixed positive integer, and $p(x)$ an arbitrary probability density function on Euclidean n-space. $p(y \mid x)$ for the density $p_{n}\left(y_{1}, \ldots, y_{n} \mid x_{1}, \ldots x_{n}\right)$ and F for F_{n}. For any real number a, let
$A=\left\{(x, y): \log \frac{p(y \mid x)}{p(y)}>a\right\}$
Then for each positive integer u, there is a code (u, n, λ) such that
$\lambda \leq u e^{-a}+P\{(X, Y) \notin A\}+P\{X \notin F\}$
Where
$P\{(X, Y) \in A\}=\int_{A} \ldots \int p(x, y) d x d y, \quad p(x, y)=p(x) p(y \mid x)$
and

$$
P\{X \in F\}=\int_{F} \ldots \int p(x) d x
$$

Proof: A sequence $x^{(1)} \in F$ such that
$P\left\{Y \in A_{x^{1}} \mid X=x^{(1)}\right\} \geq 1-\varepsilon$
where $A_{x}=\{y:(x, y) \varepsilon A\}$;
Choose the decoding set B_{1} to be $A_{x^{(1)}}$. Having chosen $x^{(1)}, \ldots \ldots ., x^{(k-1)}$ and B_{1}, \ldots, B_{k-1}, select $x^{k} \in F$ such that
$P\left\{Y \in A_{x^{(k)}}-\bigcup_{i=1}^{k-1} B_{i} \mid X=x^{(k)}\right\} \geq 1-\varepsilon ;$
Set $B_{k}=A_{x^{(k)}}-\bigcup_{i=1}^{k-1} B_{i}$, If the process does not terminate in a finite number of steps, then the sequences $x^{(i)}$ and decoding sets $B_{i}, i=1,2, \ldots, u$, form the desired code. Thus assume that the process terminates after t steps. (Conceivably $t=0$). We will show $t \geq u$ by showing that $\varepsilon \leq t e^{-a}+P\{(X, Y) \notin A\}+P\{X \notin F\}$. We proceed as follows.

Let

$$
\begin{aligned}
& B=\bigcup_{j=1}^{t} B_{j .} . \quad(\text { If } t=0, \text { take } B=\phi) . \text { Then } \\
& P\{(X, Y) \in A\}=\int_{(x, y) \in A} p(x, y) d x d y \\
& =\int_{x} p(x) \int_{y \in A_{x}} p(y \mid x) d y d x \\
& =\int_{x} p(x) \int_{y \in B \cap A_{x}} p(y \mid x) d y d x+\int_{x} p(x)
\end{aligned}
$$

E. Algorithms

Ideals. Let A be a ring. Recall that an ideal a in A is a subset such that a is subgroup of A regarded as a group under addition;

$a \in a, r \in A \Rightarrow r a \in A$

The ideal generated by a subset S of A is the intersection of all ideals A containing a ----- it is easy to verify that this is in fact an ideal, and that it consist of all finite sums of the form $\sum r_{i} S_{i}$ with $r_{i} \in A, s_{i} \in S$. When $S=\left\{s_{1}, \ldots ., s_{m}\right\}$, we shall write $\left(s_{1}, \ldots ., s_{m}\right)$ for the ideal it generates.
Let a and b be ideals in A. The set $\{a+b \mid a \in a, b \in b\}$ is an ideal, denoted by $a+b$. The ideal generated by $\{a b \mid a \in a, b \in b\}$ is denoted by $a b$. Note that $a b \subset a \cap b$. Clearly $a b$ consists of all finite sums $\sum a_{i} b_{i}$ with $a_{i} \in a$ and $\quad b_{i} \in b \quad$, and if $a=\left(a_{1}, \ldots, a_{m}\right)$ and $b=\left(b_{1}, \ldots, b_{n}\right)$
then $a b=\left(a_{1} b_{1}, \ldots, a_{i} b_{j}, \ldots, a_{m} b_{n}\right)$.Let a be an ideal of A. The set of cosets of a in A forms a ring A / a , and $a \mapsto a+a$ is a homomorphism $\phi: A \mapsto A / a$. The map $b \mapsto \phi^{-1}(b)$ is a one to one correspondence between the ideals of A / a and the ideals of A containing a An ideal p if prime if $p \neq A$ and $a b \in p \Rightarrow a \in p$ or $b \in p$. Thus p is prime if and only if A / p is nonzero and has the property that $a b=0, \quad b \neq 0 \Rightarrow a=0, \quad$ i.e., A / p is an integral domain. An ideal m is maximal if $m \neq \mid A$ and there does not exist an ideal n contained strictly between m and A. Thus m is maximal if and only if A / m has no proper nonzero ideals, and so is a field. Note that m maximal \Rightarrow m prime. The ideals of $A \times B$ are all of the form $a \times b$, with a and b ideals in A and B. To see
this, note that if c is an ideal in $A \times B$ and $(a, b) \in c \quad$, then $\quad(a, 0)=(a, b)(1,0) \in c \quad$ and $(0, b)=(a, b)(0,1) \in c \quad$. This shows that $c=a \times b$ with
$a=\{a \mid(a, b) \in c$ some $b \in b\}$
and

$$
b=\{b \mid(a, b) \in c \text { some } a \in a\}
$$

Let A be a ring. An A-algebra is a ring B together with a homomorphism $i_{B}: A \rightarrow B . \mathrm{A}$ homomorphism of A-algebra $B \rightarrow C$ is a homomorphism of rings $\varphi: B \rightarrow C$ such that $\varphi\left(i_{B}(a)\right)=i_{C}(a)$ for all $a \in A$. An A-algebra B is said to be finitely generated (or of finite-type over A) if there exist elements $x_{1}, \ldots, x_{n} \in B$ such that every element of B can be expressed as a polynomial in the x_{i} with coefficients in $i(A)$, i.e., such that the homomorphism $A\left[X_{1}, \ldots, X_{n}\right] \rightarrow B$ sending X_{i} to x_{i} is surjective. A ring homomorphism $A \rightarrow B$ is finite, and B is finitely generated as an A-module. Let k be a field, and let A be a k-algebra. If $1 \neq 0$ in A, then the map $k \rightarrow A$ is injective, we can identify k with its image, i.e., we can regard k as a subring of A. If $1=0$ in a ring R , the R is the zero ring, i.e., $R=\{0\}$.
Polynomial rings. Let k be a field. A monomial in X_{1}, \ldots, X_{n} is an expression of the form $X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}, \quad a_{j} \in N$. The total degree of the monomial is $\sum a_{i}$. We sometimes abbreviate it by $X^{\alpha}, \alpha=\left(a_{1}, \ldots, a_{n}\right) \in \square^{n} \quad$ The elements of the polynomial ring $k\left[X_{1}, \ldots, X_{n}\right]$ are finite sums $\sum c_{a_{1} \ldots a_{n}} X_{1}^{a_{1}} \ldots X_{n}^{a_{n}}, \quad c_{a_{1} \ldots a_{n}} \in k, \quad a_{j} \in \square$ With the obvious notions of equality, addition and multiplication. Thus the monomials from basis for $k\left[X_{1}, \ldots, X_{n}\right]$ as a k-vector space. The ring $k\left[X_{1}, \ldots, X_{n}\right]$ is an integral domain, and the only units in it are the nonzero constant polynomials. A polynomial $f\left(X_{1}, \ldots, X_{n}\right)$ is irreducible if it is nonconstant and has only the obvious factorizations, i.e., $f=g h \Rightarrow g$ or h is constant. Division in $k[X]$. The division algorithm allows us to divide a nonzero polynomial into another: let f and g be

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
polynomials in $k[X]$ with $g \neq 0$; then there exist unique polynomials $q, r \in k[X]$ such that $f=q g+r$ with either $r=0$ or $\operatorname{deg} r<\operatorname{deg} g$. Moreover, there is an algorithm for deciding whether $f \in(g)$, namely, find r and check whether it is zero. Moreover, the Euclidean algorithm allows to pass from finite set of generators for an ideal in $k[X]$ to a single generator by successively replacing each pair of generators with their greatest common divisor.
(Pure) lexicographic ordering (lex). Here monomials are ordered by lexicographic(dictionary) order. More precisely, let $\alpha=\left(a_{1}, \ldots a_{n}\right)$ and $\beta=\left(b_{1}, \ldots b_{n}\right)$ be two elements of \square^{n}; then $\alpha>\beta$ and $X^{\alpha}>X^{\beta}$ (lexicographic ordering) if, in the vector difference $\alpha-\beta \in \square$, the left most nonzero entry is positive. For example,
$X Y^{2}>Y^{3} Z^{4} ; \quad X^{3} Y^{2} Z^{4}>X^{3} Y^{2} Z$. Note that this isn't quite how the dictionary would order them: it would put $X X X Y Y Z Z Z Z$ after $X X X Y Y Z$. Graded reverse lexicographic order (grevlex). Here monomials are ordered by total degree, with ties broken by reverse lexicographic ordering. Thus, $\alpha>\beta$ if $\sum a_{i}>\sum b_{i}$, or $\sum a_{i}=\sum b_{i}$ and in $\alpha-\beta$ the right most nonzero entry is negative. For example:
$X^{4} Y^{4} Z^{7}>X^{5} Y^{5} Z^{4} \quad$ (total degree greater)
$X Y^{5} Z^{2}>X^{4} Y Z^{3}, \quad X^{5} Y Z>X^{4} Y Z^{2}$

Orderings on $k\left[X_{1}, \ldots X_{n}\right]$. Fix an ordering on the monomials in $k\left[X_{1}, \ldots X_{n}\right]$. Then we can write an element f of $k\left[X_{1}, \ldots X_{n}\right]$ in a canonical fashion, by re-ordering its elements in decreasing order. For example, we would write
$f=4 X Y^{2} Z+4 Z^{2}-5 X^{3}+7 X^{2} Z^{2}$
as
$f=-5 X^{3}+7 X^{2} Z^{2}+4 X Y^{2} Z+4 Z^{2} \quad($ lex $)$ or
$f=4 X Y^{2} Z+7 X^{2} Z^{2}-5 X^{3}+4 Z^{2} \quad($ grevlex $)$
Let $\sum a_{\alpha} X^{\alpha} \in k\left[X_{1}, \ldots, X_{n}\right]$, in decreasing order:

Then we define.

- The multidegree of f to be mulddeg $(f)=$ α_{0};
- The leading coefficient of f to be $L C(f$) $=a_{\alpha_{0}}$;
- The leading monomial of f to be LM(${ }^{f}$) $=X^{\alpha_{0}}$;
- The leading term of f to be $L T\left({ }^{f}\right)=$ $a_{\alpha_{0}} X^{\alpha_{0}}$
For the polynomial $f=4 X Y^{2} Z+\ldots$, the multidegree is $(1,2,1)$, the leading coefficient is 4 , the leading monomial is $X Y^{2} Z$, and the leading term is $4 X Y^{2} Z$. The division algorithm in $k\left[X_{1}, \ldots X_{n}\right]$. Fix a monomial ordering in \square^{2}. Suppose given a polynomial f and an ordered set $\left(g_{1}, \ldots g_{s}\right)$ of polynomials; the division algorithm then constructs polynomials $a_{1}, \ldots a_{s}$ and r such that $f=a_{1} g_{1}+\ldots+a_{s} g_{s}+r \quad$ Where either $r=0$ or no monomial in r is divisible by any of $L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right) \quad$ Step 1: If $L T\left(g_{1}\right) \mid L T(f)$, divide g_{1} into f to get $f=a_{1} g_{1}+h, \quad a_{1}=\frac{L T(f)}{L T\left(g_{1}\right)} \in k\left[X_{1}, \ldots, X_{n}\right]$ If $L T\left(g_{1}\right) \mid L T(h)$, repeat the process until $f=a_{1} g_{1}+f_{1} \quad$ (different a_{1}) with $L T\left(f_{1}\right)$ not divisible by $L T\left(g_{1}\right)$. Now divide g_{2} into f_{1}, and so on, until $f=a_{1} g_{1}+\ldots+a_{s} g_{s}+r_{1} \quad$ With $L T\left(r_{1}\right)$ not divisible by any $L T\left(g_{1}\right), \ldots L T\left(g_{s}\right)$
Step 2: Rewrite $r_{1}=L T\left(r_{1}\right)+r_{2}$, and repeat Step 1 with $\quad r_{2}$ for f
$f=a_{1} g_{1}+\ldots+a_{s} g_{s}+L T\left(r_{1}\right)+r_{3} \quad$ (different $a_{i}{ }^{\prime} s$) Monomial ideals. In general, an ideal a will contain a polynomial without containing the individual terms of the polynomial; for example, the ideal $a=\left(Y^{2}-X^{3}\right)$ contains $Y^{2}-X^{3}$ but not Y^{2} or X^{3}.

DEFINITION 1.5. An ideal a is monomial if $\sum c_{\alpha} X^{\alpha} \in a \Rightarrow X^{\alpha} \in a$
$f=a_{\alpha_{0}} X^{\alpha_{0}}+{ }_{\alpha_{1}} X^{\alpha_{1}}+\ldots, \quad \alpha_{0}>\alpha_{1}>\ldots, \quad \alpha_{0} \neq 0$ all α with $c_{\alpha} \neq 0$.

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

PROPOSITION 1.3. Let a be a monomial ideal, and let $A=\left\{\alpha \mid X^{\alpha} \in a\right\}$. Then A satisfies the condition $\alpha \in A, \beta \in \square^{n} \Rightarrow \alpha+\beta \in$
And a is the k-subspace of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by the $X^{\alpha}, \alpha \in A$. Conversely, of A is a subset of \square^{n} satisfying $(*)$, then the k-subspace a of $k\left[X_{1}, \ldots, X_{n}\right]$ generated by $\left\{X^{\alpha} \mid \alpha \in A\right\}$ is a monomial ideal.

PROOF. It is clear from its definition that a monomial ideal a is the k-subspace of $k\left[X_{1}, \ldots, X_{n}\right]$
generated by the set of monomials it contains. If $X^{\alpha} \in a$ and $X^{\beta} \in k\left[X_{1}, \ldots, X_{n}\right]$.

If a permutation is chosen uniformly and at random from the n ! possible permutations in S_{n}, then the counts $C_{j}^{(n)}$ of cycles of length j are dependent random variables. The joint distribution of $C^{(n)}=\left(C_{1}^{(n)}, \ldots, C_{n}^{(n)}\right)$ follows from Cauchy's formula, and is given by
$P\left[C^{(n)}=c\right]=\frac{1}{n!} N(n, c)=1\left\{\sum_{j=1}^{n} j c_{j}=n\right\} \prod_{j=1}^{n}\left(\frac{1}{j}\right)^{c_{j}} \frac{1}{c_{j}!}$,
for $c \in \square_{+}^{n}$.
Lemma1.7 For nonnegative integers $m_{1 . \ldots} m_{n}$,
$E\left(\prod_{j=1}^{n}\left(C_{j}^{(n)}\right)^{\left[m_{j}\right]}\right)=\left(\prod_{j=1}^{n}\left(\frac{1}{j}\right)^{m_{j}}\right) 1\left\{\sum_{j=1}^{n} j m_{j} \leq n\right\}$
Proof. This can be established directly by exploiting cancellation of the form $c_{j}^{\left[m_{j}\right]} / c_{j}^{!}=1 /\left(c_{j}-m_{j}\right)!$ when $c_{j} \geq m_{j}$, which occurs between the ingredients in Cauchy's formula and the falling factorials in the moments. Write $m=\sum j m_{j}$. Then, with the first sum indexed by $c=\left(c_{1}, \ldots c_{n}\right) \in \square_{+}^{n}$ and the last sum indexed by $d=\left(d_{1}, \ldots, d_{n}\right) \in \square_{+}^{n}$ via the correspondence $d_{j}=c_{j}-m_{j}$, we have

$$
\begin{aligned}
E\left(\prod_{j=1}^{n}\left(C_{j}^{(n)}\right)^{\left[m_{j}\right]}\right) & =\sum_{c} P\left[C^{(n)}=c\right] \prod_{j=1}^{n}\left(c_{j}\right)^{\left[m_{j}\right]} \\
& =\sum_{\text {cic, } 2 m_{j} \text { for } a l l} 1\left\{\sum_{j=1}^{n} j c_{j}=n\right\} \prod_{j=1}^{n} \frac{\left(c_{j}\right)^{\left[m_{j}\right]}}{j^{c_{j}} c_{j}!} \\
& =\prod_{j=1}^{n} \frac{1}{j^{m_{j}}} \sum_{d} 1\left\{\sum_{j=1}^{n} j d_{j}=n-m\right\} \prod_{j=1}^{n} \frac{1}{j^{d_{j}}\left(d_{j}\right)!}
\end{aligned}
$$

This last sum simplifies to the indicator $1(m \leq n)$, corresponding to the fact that if $n-m \geq 0$, then $d_{j}=0$ for $j>n-m$, and a random permutation in S_{n-m} must have some cycle structure $\left(d_{1}, \ldots, d_{n-m}\right)$. The moments of $C_{j}^{(n)}$ follow immediately as

$$
\begin{equation*}
E\left(C_{j}^{(n)}\right)^{[r]}=j^{-r} 1\{j r \leq n\} \tag{1.2}
\end{equation*}
$$

We note for future reference that (1.4) can also be written in the form

$$
\begin{equation*}
E\left(\prod_{j=1}^{n}\left(C_{j}^{(n)}\right)^{\left[m_{j} j\right.}\right)=E\left(\prod_{j=1}^{n} Z_{j}^{\left[m_{j}, j\right.}\right) 1\left\{\sum_{j=1}^{n} j m_{j} \leq n\right\}, \tag{1.3}
\end{equation*}
$$

Where the Z_{j} are independent Poisson-distribution random variables that satisfy $E\left(Z_{j}\right)=1 / j$

The marginal distribution of cycle counts provides a formula for the joint distribution of the cycle counts C_{j}^{n}, we find the distribution of C_{j}^{n} using a combinatorial approach combined with the inclusion-exclusion formula.

Lemma 1.8. For $1 \leq j \leq n$,

$$
\begin{equation*}
P\left[C_{j}^{(n)}=k\right]=\frac{j^{-k}(m, m i l i-k}{k!} \sum_{l=0}(-1)^{2} \frac{j^{-l}}{l!} \tag{1.1}
\end{equation*}
$$

Proof. Consider the set I of all possible cycles of length j, formed with elements chosen from $\{1,2, \ldots n\}$, so that $|I|=n^{[j] j}$. For each $\alpha \in I$, consider the "property" G_{α} of having α; that is, G_{α} is the set of permutations $\pi \in S_{n}$ such that α is one of the cycles of π. We then have $\left|G_{\alpha}\right|=(n-j)!$, since the elements of $\{1,2, \ldots, n\}$ not in α must be permuted among themselves. To use the inclusion-exclusion formula we need to calculate the term S_{r}, which is the sum of the probabilities of the r-fold intersection of properties, summing over all sets of r distinct properties. There are two cases to consider. If the r properties are indexed by r cycles having no elements in common, then the intersection specifies how $r j$ elements are

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
moved by the permutation, and there are $(n-r j)!1(r j \leq n)$ permutations in the intersection. There are $n^{[r j]} /\left(j^{r} r!\right)$ such intersections. For the other case, some two distinct properties name some element in common, so no permutation can have both these properties, and the r-fold intersection is empty. Thus
$S_{r}=(n-r j)!1(r j \leq n)$
$\times \frac{n^{[r j]}}{j^{r} r!} \frac{1}{n!}=1(r j \leq n) \frac{1}{j^{r} r!}$
Finally, the inclusion-exclusion series for the number of permutations having exactly k properties is

$$
\sum_{l \geq 0}(-1)^{l}\binom{k+l}{l} S_{k+l,}
$$

Which simplifies to (1.1) Returning to the original hat-check problem, we substitute $\mathrm{j}=1$ in (1.1) to obtain the distribution of the number of fixed points of a random permutation. For $k=0,1, \ldots, n$,

$$
\begin{equation*}
P\left[C_{1}^{(n)}=k\right]=\frac{1}{k!} \sum_{l=0}^{n-k}(-1)^{l} \frac{1}{l!} \tag{1.2}
\end{equation*}
$$

and the moments of $C_{1}^{(n)}$ follow from (1.2) with $j=1$. In particular, for $n \geq 2$, the mean and variance of $C_{1}^{(n)}$ are both equal to 1 . The joint distribution of $\left(C_{1}^{(n)}, \ldots, C_{b}^{(n)}\right)$ for any $1 \leq b \leq n$ has an expression similar to (1.7); this too can be derived by inclusion-exclusion. For any $c=\left(c_{1}, \ldots, c_{b}\right) \in \square_{+}^{b}$ with $m=\sum i c_{i}$,

$$
P\left[\left(C_{1}^{(n)}, \ldots, C_{b}^{(n)}\right)=c\right]
$$

$$
\begin{equation*}
=\left\{\prod_{i=1}^{b}\left(\frac{1}{i}\right)^{c_{i}} \frac{1}{c_{i}!}\right\} \sum_{\substack{l \geq 0 \text { with } \\ \sum i l_{i} \leq n-m}}(-1)^{l_{1}+\ldots+l_{b}} \prod_{i=1}^{b}\left(\frac{1}{i}\right)^{l_{i}} \frac{1}{l_{i}!} \tag{1.3}
\end{equation*}
$$

The joint moments of the first b counts $C_{1}^{(n)}, \ldots, C_{b}^{(n)}$ can be obtained directly from (1.2) and (1.3) by setting $m_{b+1}=\ldots=m_{n}=0$

The limit distribution of cycle counts

It follows immediately from Lemma 1.2 that for each fixed $\quad j, \quad$ as $\quad n \rightarrow \infty$,

$$
P\left[C_{j}^{(n)}=k\right] \rightarrow \frac{j^{-k}}{k!} e^{-1 / j}, \quad k=0,1,2, \ldots
$$

So that $C_{j}^{(n)}$ converges in distribution to a random variable Z_{j} having a Poisson distribution with mean $1 / j$; we use the notation $C_{j}^{(n)} \rightarrow_{d} Z_{j}$
where $Z_{j} \square P_{o}(1 / j)$ to describe this. Infact, the limit random variables are independent.

Theorem 1.6 The process of cycle counts converges in distribution to a Poisson process of \square with intensity j^{-1}. That is, as $n \rightarrow \infty$,
$\left(C_{1}^{(n)}, C_{2}^{(n)}, \ldots\right) \rightarrow_{d}\left(Z_{1}, Z_{2}, \ldots\right)$
Where the $Z_{j}, j=1,2, \ldots, \quad$ are independent Poisson-distributed random variables with $E\left(Z_{j}\right)=\frac{1}{j}$
Proof. To establish the converges in distribution one shows that for each fixed $b \geq 1$, as $n \rightarrow \infty$,

$$
P\left[\left(C_{1}^{(n)}, \ldots, C_{b}^{(n)}\right)=c\right] \rightarrow P\left[\left(Z_{1}, \ldots, Z_{b}\right)=c\right]
$$

Error rates

The proof of Theorem says nothing about the rate of convergence. Elementary analysis can be used to estimate this rate when $b=1$. Using properties of alternating series with decreasing terms, for
$k=0,1, \ldots, n$,

$$
\frac{1}{k!}\left(\frac{1}{(n-k+1)!}-\frac{1}{(n-k+2)!}\right) \leq\left|P\left[C_{1}^{(n)}=k\right]-P\left[Z_{1}=k\right]\right|
$$

$\leq \frac{1}{k!(n-k+1)!}$

It follows that
$\frac{2^{n+1}}{(n+1)!} \frac{n}{n+2} \leq \sum_{k=0}^{n}\left|P\left[C_{1}^{(n)}=k\right]-P\left[Z_{1}=k\right]\right| \leq \frac{2^{n+1}-1}{(n+1)!}$
Since
$P\left[Z_{1}>n\right]=\frac{e^{-1}}{(n+1)!}\left(1+\frac{1}{n+2}+\frac{1}{(n+2)(n+3)}+\ldots\right)<\frac{1}{(n+1)!}$,
We see from (1.11) that the total variation distance between the distribution $L\left(C_{1}^{(n)}\right)$ of $C_{1}^{(n)}$ and the distribution $L\left(Z_{1}\right)$ of Z_{1}

Establish the asymptotics of $\mathrm{P}\left[A_{n}\left(C^{(n)}\right)\right]$ under conditions $\left(A_{0}\right)$ and $\left(B_{01}\right)$, where
$A_{n}\left(C^{(n)}\right)=\bigcap_{1 \leq i \leq n} \bigcap_{r_{i}^{\prime}+1 \leq j \leq r_{i}}\left\{C_{i j}^{(n)}=0\right\}$,
and $\zeta_{i}=\left(r_{i}^{\prime} / r_{i d}\right)-1=O\left(i^{-g^{\prime}}\right)$ as $i \rightarrow \infty$, for some $g^{\prime}>0$. We start with the expression

$$
\begin{align*}
& P\left[A_{n}\left(C^{(n)}\right)\right]=\frac{P\left[T_{0 m}\left(Z^{\prime}\right)=n\right]}{P\left[T_{0 m}(Z)=n\right]} \\
& \prod_{\substack{1 \leq i \leq n \\
r_{i}+1 \leq j \leq r_{i}}}\left\{1-\frac{\theta}{i r_{i}}\left(1+E_{i 0}\right)\right\} \quad(1 . \tag{1.1}
\end{align*}
$$

$P\left[T_{0 n}\left(Z^{\prime}\right)=n\right]$
$=\frac{\theta d}{n} \exp \left\{\sum_{i \geq 1}\left[\log \left(1+i^{-1} \theta d\right)-i^{-1} \theta d\right]\right\}$
$\left\{1+O\left(n^{-1} \varphi_{\{1,2,7\}}^{\prime}(n)\right)\right\}$
and

$$
\begin{align*}
& P\left[T_{0 n}\left(Z^{\prime}\right)=n\right] \\
& =\frac{\theta d}{n} \exp \left\{\sum_{i \geq 1}\left[\log \left(1+i^{-1} \theta d\right)-i^{-1} \theta d\right]\right\} \\
& \left\{1+O\left(n^{-1} \varphi_{\{1,2,7\}}(n)\right)\right\} \tag{1.3}
\end{align*}
$$

Where $\varphi_{\{1,2,7\}}(n)$ refers to the quantity derived from Z^{\prime}. It thus follows that $P\left[A_{n}\left(C^{(n)}\right)\right] \square K n^{-\theta(1-d)}$ for a constant K, depending on Z and the r_{i}^{\prime} and computable explicitly from (1.1) - (1.3), if Conditions $\left(A_{0}\right)$ and $\left(B_{01}\right)$ are satisfied and if $\zeta_{i}^{*}=O\left(i^{-g}\right)$ from some $g^{\prime}>0$, since, under these circumstances, both $n^{-1} \varphi_{\{1,2,7\}}^{\prime}(n)$ and $n^{-1} \varphi_{\{1,2,7\}}(n)$ tend to zero as $n \rightarrow \infty$. In particular, for polynomials and square free polynomials, the relative error in this asymptotic approximation is of order n^{-1} if $g^{\prime}>1$.

For $0 \leq b \leq n / 8$ and $n \geq n_{0}$, with n_{0}
$d_{T V}(L(C[1, b]), L(Z[1, b]))$
$\leq d_{T V}(L(C[1, b]), L(Z[1, b]))$
$\leq \varepsilon_{\{7,7\}}(n, b)$,
Where $\varepsilon_{\{7,7\}}(n, b)=O(b / n)$ under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{11}\right)$ Since, by the Conditioning Relation,
$L\left(C[1, b] \mid T_{0 b}(C)=l\right)=L\left(Z[1, b] \mid T_{0 b}(Z)=l\right)$,
It follows by direct calculation that
$d_{T V}(L(C[1, b]), L(Z[1, b]))$
$=d_{T V}\left(L\left(T_{0 b}(C)\right), L\left(T_{0 b}(Z)\right)\right)$
$=\max _{A} \sum_{r \in A} P\left[T_{0 b}(Z)=r\right]$
$\left\{1-\frac{P\left[T_{b n}(Z)=n-r\right]}{P\left[T_{0 n}(Z)=n\right]}\right\}$
Suppressing the argument Z from now on, we thus obtain

$$
\begin{aligned}
& d_{T V}(L(C[1, b]), L(Z[1, b])) \\
& =\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{1-\frac{P\left[T_{b n}=n-r\right]}{P\left[T_{0 n}=n\right]}\right\}_{+} \\
& \leq \sum_{r>n / 2} P\left[T_{0 b}=r\right]+\sum_{r=0}^{[n / 2]} \frac{P\left[T_{0 b}=r\right]}{P\left[T_{0 b}=n\right]} \\
& \times\left\{\sum_{s=0}^{n} P\left[T_{0 b}=s\right]\left(P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right\}_{+}\right. \\
& \leq \sum_{r>n / 2} P\left[T_{0 b}=r\right]+\sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \\
& \times \sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{\left\{P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right\}}{P\left[T_{0 n}=n\right]} \\
& +\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=r\right] \sum_{s=[n / 2]+1}^{n} P[T=s] P\left[T_{b n}=n-s\right] / P\left[T_{0 n}=n\right]
\end{aligned}
$$

The first sum is at most $2 n^{-1} E T_{0 b}$; the third is bound by
$\left(\max _{n / 2<s \leq n} P\left[T_{0 b}=s\right]\right) / P\left[T_{0 n}=n\right]$
$\leq \frac{2 \varepsilon_{\{10.5(1)\}}(n / 2, b)}{n} \frac{3 n}{\theta P_{\theta}[0,1]}$,
$\frac{3 n}{\theta P_{\theta}[0,1]} 4 n^{-2} \phi_{\{10.8\}}^{*}(n) \sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{1}{2}|r-s|$
$\leq \frac{12 \phi_{i 10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]} \frac{E T_{0 b}}{n}$
Hence we may take
$\varepsilon_{\{7,7\}}(n, b)=2 n^{-1} E T_{0 b}(Z)\left\{1+\frac{6 \phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]}\right\} P$
$+\frac{6}{\theta P_{\theta}[0,1]} \varepsilon_{\{10.5(1)\}}(n / 2, b)$
Required order under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{11}\right)$, if $S(\infty)<\infty$. If not, $\phi_{\{10.8\}}^{*}(n)$ can be

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
replaced by $\phi_{\{10.11\}}^{*}(n)$ in the above, which has the required order, without the restriction on the r_{i} implied by $S(\infty)<\infty$. Examining the Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{11}\right)$, it is perhaps surprising to find that $\left(B_{11}\right)$ is required instead of just $\left(B_{01}\right)$; that is, that we should need $\sum_{l \geq 2} l \varepsilon_{i l}=O\left(i^{-a_{1}}\right)$ to hold for some $a_{1}>1$. A first observation is that a similar problem arises with the rate of decay of $\varepsilon_{i 1}$ as well. For this reason, n_{1} is replaced by n_{1}. This makes it possible to replace condition $\left(A_{1}\right)$ by the weaker pair of conditions $\left(A_{0}\right)$ and $\left(D_{1}\right)$ in the eventual assumptions needed for $\varepsilon_{\{7,7\}}(n, b)$ to be of order $O(b / n)$; the decay rate requirement of order $i^{-1-\gamma}$ is shifted from $\varepsilon_{i 1}$ itself to its first difference. This is needed to obtain the right approximation error for the random mappings example. However, since all the classical applications make far more stringent assumptions about the $\varepsilon_{i 1}, l \geq 2$, than are made in $\left(B_{11}\right)$. The critical point of the proof is seen where the initial estimate of the difference $P\left[T_{b n}^{(m)}=s\right]-P\left[T_{b n}^{(m)}=s+1\right]$. The factor $\varepsilon_{\{10.10\}}(n)$, which should be small, contains a far tail element from n_{1} of the form $\phi_{1}^{\theta}(n)+u_{1}^{*}(n)$, which is only small if $a_{1}>1$, being otherwise of order $O\left(n^{1-a_{1}+\delta}\right)$ for any $\delta>0$, since $a_{2}>1$ is in any case assumed. For $s \geq n / 2$, this gives rise to a contribution of order $O\left(n^{-1-a_{1}+\delta}\right)$ in the estimate of the difference $P\left[T_{b n}=s\right]-P\left[T_{b n}=s+1\right]$, which, in the remainder of the proof, is translated into a contribution of order $O\left(\mathrm{tn}^{-1-a_{1}+\delta}\right)$ for differences of the form $P\left[T_{b n}=s\right]-P\left[T_{b n}=s+1\right]$, finally leading to a contribution of order $b n^{-a_{1}+\delta}$ for any $\delta>0$ in $\varepsilon_{\{7.7\}}(n, b)$. Some improvement would seem to be possible, defining the function g by $g(w)=1_{\{w=s\}}-1_{\{w=s+t\}}$, differences that are of the form $P\left[T_{b n}=s\right]-P\left[T_{b n}=s+t\right]$ can be directly estimated, at a cost of only a single contribution of the form $\phi_{1}^{\theta}(n)+u_{1}^{*}(n)$. Then,
iterating the cycle, in which one estimate of a difference in point probabilities is improved to an estimate of smaller order, a bound of the form
$\left|P\left[T_{b n}=s\right]-P\left[T_{b n}=s+t\right]\right|=O\left(n^{-2} t+n^{-1-a_{1}+\delta}\right)$ for any $\delta>0$ could perhaps be attained, leading to a final error estimate in order $O\left(b n^{-1}+n^{-a_{1}+\delta}\right)$ for any $\delta>0$, to replace $\varepsilon_{\{7.7\}}(n, b)$. This would be of the ideal order $O(b / n)$ for large enough b, but would still be coarser for small b.

With b and n as in the previous section, we wish to show that
$\left.\left|d_{T V}(L(C[1, b]), L(Z[1, b]))-\frac{1}{2}(n+1)^{-1}\right| 1-\theta|E| T_{0 b}-E T_{0 b} \right\rvert\,$
$\leq \varepsilon_{\{7,8\}}(n, b)$,
Where $\varepsilon_{\{7.8\}}(n, b)=O\left(n^{-1} b\left[n^{-1} b+n^{-\beta_{12}+\delta}\right]\right)$ for any $\delta>0$ under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{12}\right)$, with β_{12}. The proof uses sharper estimates. As before, we begin with the formula
$d_{T V}(L(C[1, b]), L(Z[1, b]))$

$$
=\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{1-\frac{P\left[T_{b n}=n-r\right]}{P\left[T_{0 n}=n\right]}\right\}_{+}
$$

Now we observe that
$\left|\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{1-\frac{P\left[T_{b n}=n-r\right]}{P\left[T_{0 n}=n\right]}\right\}-\sum_{r=0}^{[n n / 2]} \frac{P\left[T_{0 b}=r\right]}{P\left[T_{0 n}=n\right]}\right|$
$\times\left|\sum_{s=n / 2 / 2+1}^{n} P\left[T_{0 b}=s\right]\left(P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right)\right|$
$\leq 4 n^{-2} E T_{0 b}^{2}+\left(\max _{n / 2<s \leq n} P\left[T_{0 b}=s\right]\right) / P\left[T_{0 n}=n\right]$
$+P\left[T_{0 b}>n / 2\right]$
$\leq 8 n^{-2} E T_{0 b}^{2}+\frac{3 \varepsilon_{\{10.52)\}}(n / 2, b)}{\theta P_{\theta}[0,1]}$,
We have

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

$$
\begin{align*}
& \left\lvert\, \sum_{r=0}^{[n / 2]} \frac{P\left[T_{0 b}=r\right]}{P\left[T_{0 n}=n\right]}\right. \\
& \times\left(\left\{\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right]\left(P\left[T_{b n}=n-s\right]-P\left[T_{b n}=n-r\right]\right\}_{+}\right.\right. \\
& \left.-\left\{\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1} P\left[T_{0 n}=n\right]\right\}_{+}\right) \mid \\
& \leq \frac{1}{n^{2} P\left[T_{0 n}=n\right]} \sum_{r \geq 0} P\left[T_{0 b}=r\right] \sum_{s \geq 0} P\left[T_{0 b}=s\right]|s-r| \\
& \times\left\{\varepsilon_{\{10.14\}}(n, b)+2(r \vee s)|1-\theta| n^{-1}\left\{K_{0} \theta+4 \phi_{\{10.8\}}^{*}(n)\right\}\right\} \\
& \leq \frac{6}{\theta n P_{\theta}[0,1]} E T_{0 b} \varepsilon_{\{10.14\}}(n, b) \\
& +4|1-\theta| n^{-2} E T_{0 b}^{2}\left\{K_{0} \theta+4 \phi_{\{10.8\}}^{*}(n)\right\} \\
& \left.\left(\frac{3}{\theta n P_{\theta}[0,1]}\right)\right\}, \tag{1.2}
\end{align*}
$$

The approximation in (1.2) is further simplified by noting that

$$
\sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right]\left\{\left\{\sum_{s=0}^{[n / 2]} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1}\right\}\right.
$$

$$
-\left\{\sum_{s=0} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1}\right\}_{+}
$$

$$
\leq \sum_{r=0}^{[n / 2]} P\left[T_{0 b}=r\right] \sum_{s>[n / 2]} P\left[T_{0 b}=s\right] \frac{(s-r)|1-\theta|}{n+1}
$$

$$
\begin{equation*}
\leq|1-\theta| n^{-1} E\left(T_{0 b} 1\left\{T_{0 b}>n / 2\right\}\right) \leq 2|1-\theta| n^{-2} E T_{0 b}^{2}, \tag{1.3}
\end{equation*}
$$

and then by observing that
$\sum_{r>[n / 2]} P\left[T_{0 b}=r\right]\left\{\sum_{s \geq 0} P\left[T_{0 b}=s\right] \frac{(s-r)(1-\theta)}{n+1}\right\}$
$\leq n^{-1}|1-\theta|\left(E T_{0 b} P\left[T_{0 b}>n / 2\right]+E\left(T_{0 b} 1\left\{T_{0 b}>n / 2\right\}\right)\right)$
$\leq 4|1-\theta| n^{-2} E T_{0 b}^{2}$

Combining the contributions of (1.2) -(1.3), we thus find
tha

$$
\begin{align*}
& \mid d_{T V}(L(C[1, b]), L(Z[1, b])) \\
& -(n+1)^{-1} \sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{\sum_{s \geq 0} P\left[T_{0 b}=s\right](s-r)(1-\theta)\right\}_{+} \mid \\
& \leq \varepsilon_{\{7.8\}}(n, b) \\
& =\frac{3}{\theta P_{\theta}[0,1]}\left\{\varepsilon_{\{10.5(2)\}}(n / 2, b)+2 n^{-1} E T_{0 b} \varepsilon_{\{10.14\}}(n, b)\right\} \\
& +2 n^{-2} E T_{0 b}^{2}\left\{4+3|1-\theta|+\frac{24|1-\theta| \phi_{\{10.8\}}^{*}(n)}{\theta P_{\theta}[0,1]}\right\} \tag{1.5}
\end{align*}
$$

The quantity $\varepsilon_{\{7.8\}}(n, b)$ is seen to be of the order claimed under Conditions $\left(A_{0}\right),\left(D_{1}\right)$ and $\left(B_{12}\right)$, provided that $S(\infty)<\infty$; this supplementary condition can be removed if $\phi_{\{10.8\}}^{*}(n)$ is replaced by $\phi_{\{10.11\}}^{*}(n)$ in the definition of $\varepsilon_{\{7.8\}}(n, b)$, has the required order without the restriction on the r_{i} implied by assuming that $S(\infty)<\infty$. Finally, a direct calculation now shows that
$\sum_{r \geq 0} P\left[T_{0 b}=r\right]\left\{\sum_{s \geq 0} P\left[T_{0 b}=s\right](s-r)(1-\theta)\right\}_{+}$
$=\frac{1}{2}|1-\theta| E\left|T_{0 b}-E T_{0 b}\right|$

Example 1.0. Consider the point

 $O=(0, \ldots, 0) \in \square^{n}$. For an arbitrary vector r, the coordinates of the point $x=O+r$ are equal to the respective coordinates of the vector $r: x=\left(x^{1}, \ldots x^{n}\right)$ and $r=\left(x^{1}, \ldots, x^{n}\right)$. The vector r such as in the example is called the position vector or the radius vector of the point x. (Or, in greater detail: r is the radius-vector of x w.r.t an origin O). Points are frequently specified by their radiusvectors. This presupposes the choice of O as the "standard origin". Let us summarize. We have considered \square^{n} and interpreted its elements in two ways: as points and as vectors. Hence we may say that we leading with the two copies of $\square^{n}: \square^{n}=$ \{points \}, $\square^{n}=\{$ vectors $\}$Operations with vectors: multiplication by a number, addition. Operations with points and vectors: adding a vector to a point (giving a point),
subtracting two points (giving a vector). \square^{n} treated in this way is called an n-dimensional affine space. (An "abstract" affine space is a pair of sets, the set of points and the set of vectors so that the operations as above are defined axiomatically). Notice that

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com

Vol. 2, Issue 6, November- December 2012, pp.434-461

vectors in an affine space are also known as "free vectors". Intuitively, they are not fixed at points and "float freely" in space. From \square^{n} considered as an affine space we can precede in two opposite directions: \square^{n} as an Euclidean space $\Leftarrow \square^{n}$ as an affine space $\Rightarrow \square^{n}$ as a manifold.Going to the left means introducing some extra structure which will make the geometry richer. Going to the right means forgetting about part of the affine structure; going further in this direction will lead us to the so-called "smooth (or differentiable) manifolds". The theory of differential forms does not require any extra geometry. So our natural direction is to the right. The Euclidean structure, however, is useful for examples and applications. So let us say a few words about it:

Remark 1.0. Euclidean geometry. In \square^{n} considered as an affine space we can already do a good deal of geometry. For example, we can consider lines and planes, and quadric surfaces like an ellipsoid. However, we cannot discuss such things as "lengths", "angles" or "areas" and "volumes". To be able to do so, we have to introduce some more definitions, making \square^{n} a Euclidean space. Namely, we define the length of a vector $a=\left(a^{1}, \ldots, a^{n}\right)$ to be

$$
\begin{equation*}
|a|:=\sqrt{\left(a^{1}\right)^{2}+\ldots+\left(a^{n}\right)^{2}} \tag{1}
\end{equation*}
$$

After that we can also define distances between points as follows:

$$
\begin{equation*}
d(A, B):=|\overrightarrow{A B}| \tag{2}
\end{equation*}
$$

One can check that the distance so defined possesses natural properties that we expect: is it always non-negative and equals zero only for coinciding points; the distance from A to B is the same as that from B to A (symmetry); also, for three points, A, B and C , we have $d(A, B) \leq d(A, C)+d(C, B) \quad$ (the "triangle inequality"). To define angles, we first introduce the scalar product of two vectors

$$
\begin{equation*}
(a, b):=a^{1} b^{1}+\ldots+a^{n} b^{n} \tag{3}
\end{equation*}
$$

Thus $|a|=\sqrt{(a, a)}$. The scalar product is also denote by dot: $a \cdot b=(a, b)$, and hence is often referred to as the "dot product". Now, for nonzero vectors, we define the angle between them by the equality

$$
\begin{equation*}
\cos \alpha:=\frac{(a, b)}{|a||b|} \tag{4}
\end{equation*}
$$

The angle itself is defined up to an integral multiple of 2π. For this definition to be consistent we have to ensure that the r.h.s. of (4) does not
exceed 1 by the absolute value. This follows from the inequality

$$
\begin{equation*}
(a, b)^{2} \leq|a|^{2}|b|^{2} \tag{5}
\end{equation*}
$$

known as the Cauchy-Bunyakovsky-Schwarz inequality (various combinations of these three names are applied in different books). One of the ways of proving (5) is to consider the scalar square of the linear combination $a+t b$, where $t \in R$. As $(a+t b, a+t b) \geq 0$ is a quadratic polynomial in t which is never negative, its discriminant must be less or equal zero. Writing this explicitly yields (5). The triangle inequality for distances also follows from the inequality (5).

Example 1.1. Consider the function $f(x)=x^{i}$ (the i-th coordinate). The linear function $d x^{i}$ (the differential of x^{i}) applied to an arbitrary vector h is simply h^{i}.From these examples follows that we can rewrite $d f$ as

$$
\begin{equation*}
d f=\frac{\partial f}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} d x^{n} \tag{1}
\end{equation*}
$$

which is the standard form. Once again: the partial derivatives in (1) are just the coefficients (depending on $x)$; $d x^{1}, d x^{2}, \ldots$ are linear functions giving on an arbitrary vector h its coordinates h^{1}, h^{2}, \ldots, respectively. Hence

$$
\begin{align*}
& d f(x)(h)=\partial_{h f(x)}=\frac{\partial f}{\partial x^{1}} h^{1}+ \\
& \ldots+\frac{\partial f}{\partial x^{n}} h^{n}, \tag{2}
\end{align*}
$$

Theorem 1.7. Suppose we have a parametrized curve $t \mapsto x(t)$ passing through $x_{0} \in \square^{n}$ at $t=t_{0}$ and with the velocity vector $x\left(t_{0}\right)=v$ Then
$\frac{d f(x(t))}{d t}\left(t_{0}\right)=\partial_{v} f\left(x_{0}\right)=d f\left(x_{0}\right)(v)$

Proof. Indeed, consider a small increment of the parameter $t: t_{0} \mapsto t_{0}+\Delta t$, Where $\Delta t \mapsto 0$. On the other hand, we have $f\left(x_{0}+h\right)-f\left(x_{0}\right)=d f\left(x_{0}\right)(h)+\beta(h)|h| \quad$ for an arbitrary vector h, where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. Combining it together, for the increment of $f(x(t))$ we obtain

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

$$
\begin{aligned}
& f\left(x\left(t_{0}+\Delta t\right)-f\left(x_{0}\right)\right. \\
& =d f\left(x_{0}\right)(v \cdot \Delta t+\alpha(\Delta t) \Delta t) \\
& +\beta(v \cdot \Delta t+\alpha(\Delta t) \Delta t) \cdot|v \Delta t+\alpha(\Delta t) \Delta t| \\
& =d f\left(x_{0}\right)(v) \cdot \Delta t+\gamma(\Delta t) \Delta t
\end{aligned}
$$

For a certain $\gamma(\Delta t)$ such that $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$ (we used the linearity of $d f\left(x_{0}\right)$). By the definition, this means that the derivative of $f(x(t))$ at $t=t_{0}$ is exactly $d f\left(x_{0}\right)(v)$. The statement of the theorem can be expressed by a simple formula:
$\frac{d f(x(t))}{d t}=\frac{\partial f}{\partial x^{1}} x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} x^{n}$
To calculate the value Of $d f$ at a point x_{0} on a given vector v one can take an arbitrary curve passing Through x_{0} at t_{0} with v as the velocity vector at t_{0} and calculate the usual derivative of $f(x(t))$ at $t=t_{0}$.

Theorem 1.8. For functions $f, g: U \rightarrow \square$, $U \subset \square^{n}$,

$$
\begin{align*}
& d(f+g)=d f+d g \tag{1}\\
& d(f g)=d f . g+f . d g \tag{2}
\end{align*}
$$

Proof. Consider an arbitrary point x_{0} and an arbitrary vector v stretching from it. Let a curve $x(t)$ be such that $x\left(t_{0}\right)=x_{0}$ and $x\left(t_{0}\right)=v$.
Hence
$d(f+g)\left(x_{0}\right)(v)=\frac{d}{d t}(f(x(t))+g(x(t)))$
at $t=t_{0}$ and
$d(f g)\left(x_{0}\right)(v)=\frac{d}{d t}(f(x(t)) g(x(t)))$
at $t=t_{0}$ Formulae (1) and (2) then immediately follow from the corresponding formulae for the usual derivative Now, almost without change the theory generalizes to functions taking values in \square^{m} instead of \square. The only difference is that now the differential of a map $F: U \rightarrow \square^{m}$ at a point x will be a linear function taking vectors in \square^{n} to vectors in \square^{m} (instead of \square). For an arbitrary vector $h \in \square^{n}$,

$$
\begin{align*}
F(x+h)=F(x) & +d F(x)(h) \\
& +\beta(h)|h| \tag{3}
\end{align*}
$$

Where $\beta(h) \rightarrow 0 \quad$ when $\quad h \rightarrow 0$. We have $d F=\left(d F^{1}, \ldots, d F^{m}\right)$ and $d F=\frac{\partial F}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial F}{\partial x^{n}} d x^{n}$

$$
=\left(\begin{array}{ccc}
\frac{\partial F^{1}}{\partial x^{1}} \ldots . & \frac{\partial F^{1}}{\partial x^{n}} \tag{4}\\
\cdots & \cdots & \cdots \\
\frac{\partial F^{m}}{\partial x^{1}} & \ldots & \frac{\partial F^{m}}{\partial x^{n}}
\end{array}\right)\left(\begin{array}{c}
d x^{1} \\
\cdots \\
d x^{n}
\end{array}\right)
$$

In this matrix notation we have to write vectors as vector-columns.

Theorem 1.9. For an arbitrary parametrized curve $x(t)$ in \square^{n}, the differential of a map $F: U \rightarrow \square^{m}$ (where $U \subset \square^{n}$) maps the velocity vector $x(t)$ to the velocity vector of the curve $F(x(t))$ in $\square^{m}:$
$\frac{d F(x(t))}{d t}=d F(x(t))(x(t))$
Proof. By the definition of the velocity vector,
$x(t+\Delta t)=x(t)+x(t) \cdot \Delta t+\alpha(\Delta t) \Delta t$
Where $\alpha(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. By the definition of the differential,
$F(x+h)=F(x)+d F(x)(h)+\beta(h) \mid h$
Where $\beta(h) \rightarrow 0$ when $h \rightarrow 0$. we obtain
$F(x(t+\Delta t))=F(x+\underbrace{x(t) \cdot \Delta t+\alpha(\Delta t) \Delta t)}_{h}$
$=F(x)+d F(x)(x(t) \Delta t+\alpha(\Delta t) \Delta t)+$
$\beta(\dot{x}(t) \Delta t+\alpha(\Delta t) \Delta t) .|x(t) \Delta t+\alpha(\Delta t) \Delta t|$
$=F(x)+d F(x)(x(t) \Delta t+\gamma(\Delta t) \Delta t$

For some $\gamma(\Delta t) \rightarrow 0$ when $\Delta t \rightarrow 0$. This precisely means that $d F(x) x(t)$ is the velocity vector of $F(x)$. As every vector attached to a point can be viewed as the velocity vector of some curve

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
passing through this point, this theorem gives a clear geometric picture of $d F$ as a linear map on vectors.

Theorem 1.10 Suppose we have two maps $F: U \rightarrow V \quad$ and $\quad G: V \rightarrow W, \quad$ where $U \subset \square^{n}, V \subset \square^{m}, W \subset \square^{p}$ (open domains). Let $F: x \mapsto y=F(x)$. Then the differential of the composite map $G o F: U \rightarrow W$ is the composition of the differentials of F and G :

$$
\begin{equation*}
d(G o F)(x)=d G(y) o d F(x) \tag{4}
\end{equation*}
$$

i.e., if $d G$ and $d F$ are expressed by matrices of partial derivatives, then $d(G o F)$ is expressed by the product of these matrices. This is often written as

$$
\left(\begin{array}{ll}
\frac{\partial z^{1}}{\partial x^{1}} & \ldots \\
\ldots & \frac{\partial z^{1}}{\partial x^{n}} \\
\cdots & \ldots \\
\frac{\partial z^{p}}{\partial x^{1}} & \ldots
\end{array}\right)=\left(\begin{array}{ccc}
\frac{\partial z^{p}}{\partial y^{1}} & \ldots & \frac{\partial z^{1}}{\partial y^{m}} \\
\ldots & \ldots & \ldots \\
\frac{\partial z^{p}}{\partial y^{1}} & \ldots & \frac{\partial z^{p}}{\partial y^{m}}
\end{array}\right)
$$

Proof. We can use the description of the differential .Consider a curve $x(t)$ in \square^{n} with the velocity vector x. Basically, we need to know to which vector in \square^{p} it is taken by $d(G o F)$. the curve $(G o F)(x(t)=G(F(x(t))$. By the same theorem, it equals the image under $d G$ of the Anycast Flow vector to the curve $F(x(t))$ in \square^{m}. Applying the theorem once again, we see that the velocity vector to the curve $F(x(t))$ is the image under $d F$ of the vector $x(t)$. Hence $d(G o F)(x)=d G(d F(x)) \quad$ for \quad an arbitrary vector x.

Corollary 1.0. If we denote coordinates in \square^{n} by $\left(x^{1}, \ldots, x^{n}\right)$ and in \square^{m} by $\left(y^{1}, \ldots, y^{m}\right)$, and write $d F=\frac{\partial F}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial F}{\partial x^{n}} d x^{n}$

$$
\begin{equation*}
d G=\frac{\partial G}{\partial y^{1}} d y^{1}+\ldots+\frac{\partial G}{\partial y^{n}} d y^{n} \tag{1}
\end{equation*}
$$

Then the chain rule can be expressed as follows:
$d(G o F)=\frac{\partial G}{\partial y^{1}} d F^{1}+\ldots+\frac{\partial G}{\partial y^{m}} d F^{m}$,
Where $d F^{i}$ are taken from (1). In other words, to get $d(G o F)$ we have to substitute into (2) the expression for $d y^{i}=d F^{i}$ from (3). This can also be expressed by the following matrix formula:

$$
d(G o F)=\left(\begin{array}{cc}
\frac{\partial G^{1}}{\partial y^{1}} & \ldots
\end{array} \frac{\partial G^{1}}{\partial y^{m}}\right)\left(\begin{array}{ccc}
\frac{\partial F^{1}}{\partial x^{1}} & \ldots & \frac{\partial F^{1}}{\partial x^{n}} \tag{4}\\
\ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots \\
\frac{\partial G^{p}}{\partial y^{1}} & \ldots & \frac{\partial G^{p}}{\partial y^{m}}
\end{array}\right)\left(\begin{array}{c}
d x^{1} \\
\frac{\partial F^{m}}{\partial x^{1}}
\end{array} \ldots \frac{\partial F^{m}}{\partial x^{n}}\right) ~\left(d x^{n}\right)
$$

$\left(\begin{array}{ccc}\frac{\partial y^{1}}{\partial x^{1}} & \cdots & \frac{\partial y^{1}}{\partial x^{n}} \\ \cdots & \cdots & \cdots \\ \frac{\partial y^{m}}{\partial x^{1}} & \cdots & \frac{\partial y^{m}}{\partial x^{n}}\end{array}\right)$,

Or
$\frac{\partial z^{\mu}}{\partial x^{a}}=\sum_{i=1}^{m} \frac{\partial z^{\mu}}{\partial y^{i}} \frac{\partial y^{i}}{\partial x^{a}}$,
Where it is assumed that the dependence of $y \in \square^{m}$ on $x \in \square^{n}$ is given by the map F, the dependence of $z \in \square^{p}$ on $y \in \square^{m}$ is given by the map G, and the dependence of $z \in \square^{p}$ on $x \in \square^{n}$ is given by the composition GoF.

Definition 1.6. Consider an open domain $U \subset \square^{n}$. Consider also another copy of \square^{n}, denoted for distinction \square_{y}^{n}, with the standard coordinates $\left(y^{1} \ldots y^{n}\right)$. A system of coordinates in the open domain U is given by a map $F: V \rightarrow U$, where $V \subset \square_{y}^{n}$ is an open domain of \square_{y}^{n}, such that the following three conditions are satisfied :
(1) F is smooth;
(2) F is invertible;
(3) $F^{-1}: U \rightarrow V$ is also smooth

The coordinates of a point $x \in U$ in this system are the standard coordinates of $F^{-1}(x) \in \square_{y}^{n}$
In other words,

$$
\begin{equation*}
F:\left(y^{1} \ldots, y^{n}\right) \mapsto x=x\left(y^{1} \ldots, y^{n}\right) \tag{1}
\end{equation*}
$$

Here the variables $\left(y^{1} \ldots, y^{n}\right)$ are the "new" coordinates of the point x

Example 1.2. Consider a curve in \square^{2} specified in polar coordinates as

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
$x(t): r=r(t), \varphi=\varphi(t)$
We can simply use the chain rule. The map $t \mapsto x(t)$ can be considered as the composition of the maps $\quad t \mapsto(r(t), \varphi(t)),(r, \varphi) \mapsto x(r, \varphi)$. Then, by the chain rule, we have
$\dot{x}=\frac{d x}{d t}=\frac{\partial x}{\partial r} \frac{d r}{d t}+\frac{\partial x}{\partial \varphi} \frac{d \varphi}{d t}=\frac{\partial x}{\partial r} \dot{r}+\frac{\partial x}{\partial \varphi} \dot{\varphi}$

Here r and φ are scalar coefficients depending on t, whence the partial derivatives $\partial x / \partial r, \partial x / \partial \varphi$ are vectors depending on point in \square^{2}. We can compare this with the formula in the "standard" coordinates:
$\dot{x}=e_{1} \dot{x}+e_{2} \dot{y} \quad$. Consider the vectors $\partial x / \partial r, \partial x / \partial \varphi$. Explicitly we have
$\frac{\partial x}{\partial r}=(\cos \varphi, \sin \varphi)$
$\frac{\partial x}{\partial \varphi}=(-r \sin \varphi, r \cos \varphi)$
From where it follows that these vectors make a basis at all points except for the origin (where $r=0$). It is instructive to sketch a picture, drawing vectors corresponding to a point as starting from that point. Notice that $\partial x / \partial r, \partial x / \partial \varphi$ are, respectively, the velocity vectors for the curves $r \mapsto x(r, \varphi)$ $\left(\varphi=\varphi_{0}\right.$ fixed $)$
and
$\varphi \mapsto x(r, \varphi)\left(r=r_{0}\right.$ fixed $)$. We can conclude that for an arbitrary curve given in polar coordinates the velocity vector will have components (r, φ) if as a basis we take $e_{r}:=\partial x / \partial r, e_{\varphi}:=\partial x / \partial \varphi:$

$$
\begin{equation*}
x=e_{r} r+e_{\varphi} \varphi \tag{5}
\end{equation*}
$$

A characteristic feature of the basis e_{r}, e_{φ} is that it is not "constant" but depends on point. Vectors "stuck to points" when we consider curvilinear coordinates.

Proposition 1.3. The velocity vector has the same appearance in all coordinate systems.
Proof. Follows directly from the chain rule and the transformation law for the basis e_{i}. In particular, the elements of the basis $e_{i}=\partial x / \partial x^{i}$ (originally, a formal notation) can be understood directly as the velocity vectors of the coordinate lines
$x^{i} \mapsto x\left(x^{1}, \ldots, x^{n}\right) \quad$ (all coordinates but x^{i} are
fixed). Since we now know how to handle velocities in arbitrary coordinates, the best way to treat the differential of a map $F: \square^{n} \rightarrow \square^{m}$ is by its action on the velocity vectors. By definition, we set

$$
\begin{equation*}
d F\left(x_{0}\right): \frac{d x(t)}{d t}\left(t_{0}\right) \mapsto \frac{d F(x(t))}{d t}\left(t_{0}\right) \tag{1}
\end{equation*}
$$

Now $d F\left(x_{0}\right)$ is a linear map that takes vectors attached to a point $x_{0} \in \square^{n}$ to vectors attached to the point $F(x) \in \square^{m}$
$d F=\frac{\partial F}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial F}{\partial x^{n}} d x^{n}$

$$
\left(e_{1}, \ldots, e_{m}\right)\left(\begin{array}{ccc}
\frac{\partial F^{1}}{\partial x^{1}} & \ldots & \frac{\partial F^{1}}{\partial x^{n}} \tag{2}\\
\ldots & \ldots & \ldots \\
\frac{\partial F^{m}}{\partial x^{1}} & \ldots & \frac{\partial F^{m}}{\partial x^{n}}
\end{array}\right)\left(\begin{array}{c}
d x^{1} \\
\ldots \\
d x^{n}
\end{array}\right)
$$

In particular, for the differential of a function we always have
$d f=\frac{\partial f}{\partial x^{1}} d x^{1}+\ldots+\frac{\partial f}{\partial x^{n}} d x^{n}$,
Where x^{i} are arbitrary coordinates. The form of the differential does not change when we perform a change of coordinates.

Example 1.3 Consider a 1 -form in \square^{2} given in the standard coordinates:
$A=-y d x+x d y$ In the polar coordinates we will have $x=r \cos \varphi, y=r \sin \varphi$, hence
$d x=\cos \varphi d r-r \sin \varphi d \varphi$
$d y=\sin \varphi d r+r \cos \varphi d \varphi$
Substituting into A, we get
$A=-r \sin \varphi(\cos \varphi d r-r \sin \varphi d \varphi)$
$+r \cos \varphi(\sin \varphi d r+r \cos \varphi d \varphi)$
$=r^{2}\left(\sin ^{2} \varphi+\cos ^{2} \varphi\right) d \varphi=r^{2} d \varphi$
Hence $A=r^{2} d \varphi$ is the formula for A in the polar coordinates. In particular, we see that this is again a 1-form, a linear combination of the differentials of coordinates with functions as coefficients. Secondly, in a more conceptual way, we can define a 1 -form in a domain U as a linear function on vectors at every point of U : $\omega(v)=\omega_{1} v^{1}+\ldots+\omega_{n} v^{n}$,

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

If $v=\sum e_{i} v^{i}$, where $e_{i}=\partial x / \partial x^{i}$. Recall that the differentials of functions were defined as linear functions on vectors (at every point), and $d x^{i}\left(e_{j}\right)=d x^{i}\left(\frac{\partial x}{\partial x^{j}}\right)=\delta_{j}^{i}$
every point x.
Theorem 1.9. For arbitrary 1-form ω and path γ , the integral $\int_{\gamma} \omega$ does not change if we change parametrization of γ provide the orientation remains the same.
Proof: \quad Consider $\quad\left\langle\omega(x(t)), \frac{d x}{d t^{\prime}}\right\rangle \quad$ and $\left\langle\omega\left(x\left(t\left(t^{\prime}\right)\right)\right), \frac{d x}{d t^{\prime}}\right\rangle$ As $\left\langle\omega\left(x\left(t\left(t^{\prime}\right)\right)\right), \frac{d x}{d t^{\prime}}\right\rangle=\left\lvert\,\left\langle\omega\left(x\left(t\left(t^{\prime}\right)\right)\right), \frac{d x}{d t^{\prime}}\right\rangle \cdot \frac{d t}{d t^{\prime}}\right.$,

Let p be a rational prime and let $K=\square\left(\zeta_{p}\right)$. We write ζ for ζ_{p} or this section. Recall that K has degree $\varphi(p)=p-1$ over \square. We wish to show that $O_{K}=\square[\zeta]$. Note that ζ is a root of $x^{p}-1$, and thus is an algebraic integer; since O_{K} is a ring we have that $\square[\zeta] \subseteq O_{K}$. We give a proof without assuming unique factorization of ideals. We begin with some norm and trace computations. Let j be an integer. If j is not divisible by p, then ζ^{j} is a primitive $p^{\text {th }}$ root of unity, and thus its conjugates are $\zeta, \zeta^{2}, \ldots, \zeta^{p-1}$. Therefore
$\operatorname{Tr}_{K / \square}\left(\zeta^{j}\right)=\zeta+\zeta^{2}+\ldots+\zeta^{p-1}=\Phi_{p}(\zeta)-1=-1$ If p does divide j, then $\zeta^{j}=1$, so it has only the one conjugate 1 , and $\operatorname{Tr}_{K / \square}\left(\zeta^{j}\right)=p-1 \mathrm{By}$ linearity of the trace, we find that
$\operatorname{Tr}_{K / \square}(1-\zeta)=\operatorname{Tr}_{K / \square}\left(1-\zeta^{2}\right)=\ldots$
$=\operatorname{Tr}_{K / \square}\left(1-\zeta^{p-1}\right)=p$
We also need to compute the norm of $1-\zeta$. For this, we use the factorization

$$
\begin{aligned}
& x^{p-1}+x^{p-2}+\ldots+1=\Phi_{p}(x) \\
& =(x-\zeta)\left(x-\zeta^{2}\right) \ldots\left(x-\zeta^{p-1}\right)
\end{aligned}
$$

Plugging in $x=1$ shows that

$$
p=(1-\zeta)\left(1-\zeta^{2}\right) \ldots\left(1-\zeta^{p-1}\right)
$$

Since the $\left(1-\zeta^{j}\right)$ are the conjugates of $(1-\zeta)$, this shows that $N_{K / \square}(1-\zeta)=p$ The key result for determining the ring of integers O_{K} is the following.

LEMMA 1.9

$$
(1-\zeta) O_{K} \cap \square=p \square
$$

Proof. We saw above that p is a multiple of $(1-\zeta) \quad$ in $\quad O_{K}, \quad$ so the inclusion $(1-\zeta) O_{K} \cap \square \supseteq p \square \quad$ is immediate. Suppose now that the inclusion is strict. Since $(1-\zeta) O_{K} \cap \square$ is an ideal of \square containing $p \square$ and $p \square$ is a maximal ideal of \square, we must have $(1-\zeta) O_{K} \cap \square=\square \quad$ Thus we can write

$$
1=\alpha(1-\zeta)
$$

For some $\alpha \in O_{K}$. That is, $1-\zeta$ is a unit in O_{K}.
COROLLARY 1.1 For any $\alpha \in O_{K}$,
$\operatorname{Tr}_{K / \square}((1-\zeta) \alpha) \in p . \square$
PROOF. We have

$$
\begin{aligned}
\operatorname{Tr}_{K / \square}(& (1-\zeta) \alpha)=\sigma_{1}((1-\zeta) \alpha)+\ldots+\sigma_{p-1}((1-\zeta) \alpha) \\
& =\sigma_{1}(1-\zeta) \sigma_{1}(\alpha)+\ldots+\sigma_{p-1}(1-\zeta) \sigma_{p-1}(\alpha) \\
& =(1-\zeta) \sigma_{1}(\alpha)+\ldots+\left(1-\zeta^{p-1}\right) \sigma_{p-1}(\alpha)
\end{aligned}
$$

Where the σ_{i} are the complex embeddings of K (which we are really viewing as automorphisms of K) with the usual ordering. Furthermore, $1-\zeta^{j}$ is a multiple of $1-\zeta$ in O_{K} for every $j \neq 0$. Thus $\operatorname{Tr}_{K / \square}(\alpha(1-\zeta)) \in(1-\zeta) O_{K}$ Since the trace is also a rational integer.

PROPOSITION 1.4 Let p be a prime number and let $K=\mid \square\left(\zeta_{p}\right)$ be the $p^{\text {th }}$ cyclotomic field. Then $O_{K}=\square\left[\zeta_{p}\right] \cong \square[x] /\left(\Phi_{p}(x)\right) ; \quad$ Thus $1, \zeta_{p}, \ldots, \zeta_{p}^{p-2}$ is an integral basis for O_{K}.
PROOF. Let $\alpha \in O_{K}$ and write
$\alpha=a_{0}+a_{1} \zeta+\ldots+a_{p-2} \zeta^{p-2} \quad$ With $a_{i} \in \square$.
Then

$$
\begin{aligned}
& \alpha(1-\zeta)=a_{0}(1-\zeta)+a_{1}\left(\zeta-\zeta^{2}\right)+\ldots \\
& +a_{p-2}\left(\zeta^{p-2}-\zeta^{p-1}\right)
\end{aligned}
$$

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA)
ISSN: 2248-9622
www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
By the linearity of the trace and our above calculations we find that $\operatorname{Tr}_{\text {K/ }}(\alpha(1-\zeta))=p a_{0}$ We also have
$\operatorname{Tr}_{\text {K/ }}(\alpha(1-\zeta)) \in p \square$, so $a_{0} \in \square \quad$ Next consider the algebraic integer $\left(\alpha-a_{0}\right) \zeta^{-1}=a_{1}+a_{2} \zeta+\ldots+a_{p-2} \zeta^{p-3}$; This is an algebraic integer since $\zeta^{-1}=\zeta^{p-1}$ is. The same argument as above shows that $a_{1} \in \square$, and continuing in this way we find that all of the a_{i} are in \square. This completes the proof.

Example 1.4 Let $K=\square$, then the local ring $\square_{(p)}$ is simply the subring of \square of rational numbers with denominator relatively prime to p. Note that this ring $\square_{(p)}$ is not the ring \square_{p} of p-adic integers; to get \square_{p} one must complete $\square_{(p)}$. The usefulness of $O_{K, p}$ comes from the fact that it has a particularly simple ideal structure. Let a be any proper ideal of $O_{K, p}$ and consider the ideal $a \cap O_{K}$ of O_{K}. We claim that $a=\left(a \cap O_{K}\right) O_{K, p} ; \quad$ That is, that a is generated by the elements of a in $a \cap O_{K}$. It is clear from the definition of an ideal that $a \supseteq\left(a \cap O_{K}\right) O_{K, p}$. To prove the other inclusion, let α be any element of a. Then we can write $\alpha=\beta / \gamma \quad$ where $\quad \beta \in O_{K} \quad$ and $\quad \gamma \notin p$. In particular, $\beta \in a$ (since $\beta / \gamma \in a$ and a is an ideal), so $\beta \in O_{K}$ and $\gamma \notin p$. so $\beta \in a \cap O_{K}$. Since $\quad 1 / \gamma \in O_{K, p}$, this implies that $\alpha=\beta / \gamma \in\left(a \cap O_{K}\right) O_{K, p}$, as claimed.We can use this fact to determine all of the ideals of $O_{K, p}$. Let a be any ideal of $O_{K, p}$ and consider the ideal factorization of $a \cap O_{K}$ in O_{K}. write it as $a \cap O_{K}=p^{n} b$ For some n and some ideal b, relatively prime to p. we claim first that $b O_{K, p}=O_{K, p}$. We now find that

$$
a=\left(a \cap O_{K}\right) O_{K, p}=p^{n} b O_{K, p}=p^{n} O_{K, p}
$$

Since $b O_{K, p}$. Thus every ideal of $O_{K, p}$ has the form $p^{n} O_{K, p}$ for some n; it follows immediately that $O_{K, p}$ is noetherian. It is also now clear that $p^{n} O_{K, p}$ is the unique non-zero prime ideal in $O_{K, p}$.

Furthermore, the inclusion $O_{K} \mapsto O_{K, p} / p O_{K, p}$ Since $p O_{K, p} \cap O_{K}=p$, this map is also surjection, since the residue class of $\alpha / \beta \in O_{K, p}$ (with $\alpha \in O_{K}$ and $\beta \notin p$) is the image of $\alpha \beta^{-1}$ in $O_{K / p}$, which makes sense since β is invertible in $O_{K / p}$. Thus the map is an isomorphism. In particular, it is now abundantly clear that every nonzero prime ideal of $O_{K, p}$ is maximal. To
show that $O_{K, p}$ is a Dedekind domain, it remains to show that it is integrally closed in K. So let $\gamma \in K$ be a root of a polynomial with coefficients in $O_{K, p}$; write this polynomial as $x^{m}+\frac{\alpha_{m-1}}{\beta_{m-1}} x^{m-1}+\ldots+\frac{\alpha_{0}}{\beta_{0}} \quad$ With $\quad \alpha_{i} \in O_{K} \quad$ and $\beta_{i} \in O_{K-p}$. Set $\beta=\beta_{0} \beta_{1} \ldots \beta_{m-1}$. Multiplying by β^{m} we find that $\beta \gamma$ is the root of a monic polynomial with coefficients in O_{K}. Thus $\beta \gamma \in O_{K} ; \quad$ since $\quad \beta \notin p$, we have $\beta \gamma / \beta=\gamma \in O_{K, p}$. Thus $O_{K, p}$ is integrally close in K.

COROLLARY 1.2. Let K be a number field of degree n and let α be in O_{K} then $N_{K / \square}^{\prime}\left(\alpha O_{K}\right)=\left|N_{K / \square}(\alpha)\right|$
PROOF. We assume a bit more Galois theory than usual for this proof. Assume first that K / \square is Galois. Let σ be an element of $\operatorname{Gal}(K / \square)$. It is clear that $\sigma\left(O_{K}\right) / \sigma(\alpha) \cong O_{K / \alpha} ; \quad$ since $\sigma\left(O_{K}\right)=O_{K}$, this shows that $N_{K / \square}^{\prime}\left(\sigma(\alpha) O_{K}\right)=N_{K / \square}^{\prime}\left(\alpha O_{K}\right)$. Taking the product over all $\sigma \in \operatorname{Gal}(K / \square)$, we have $N_{K / \square}^{\prime}\left(N_{K / \square}(\alpha) O_{K}\right)=N_{K / \square}^{\prime}\left(\alpha O_{K}\right)^{n} \quad$ Since $N_{K / \square}(\alpha)$ is a rational integer and O_{K} is a free \square module of rank n,
$O_{K} / N_{K / \square}(\alpha) O_{K} \quad$ Will have order $N_{K / \square}(\alpha)^{n} ;$ therefore

$$
N_{K / \square}^{\prime}\left(N_{K / \square}(\alpha) O_{K}\right)=N_{K / \square}\left(\alpha O_{K}\right)^{n}
$$

This completes the proof. In the general case, let L be the Galois closure of K and set $[L: K]=m$.

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461

F. Authors and Affiliations

Dr Akash Singh is working with IBM Corporation as an IT Architect and has been designing Mission Critical System and Service Solutions; He has published papers in IEEE and other International Conferences and Journals.

He joined IBM in Jul 2003 as a IT Architect which conducts research and design of High Performance Smart Grid Services and Systems and design mission critical architecture for High Performance Computing Platform and Computational Intelligence and High Speed Communication systems. He is a member of IEEE (Institute for Electrical and Electronics Engineers), the AAAI (Association for the Advancement of Artificial Intelligence) and the AACR (American Association for Cancer Research). He is the recipient of numerous awards from World Congress in Computer Science, Computer Engineering and Applied Computing 2010, 2011, and IP Multimedia System 2008 and Billing and Roaming 2008. He is active research in the field of Artificial Intelligence and advancement in Medical Systems. He is in Industry for 18 Years where he performed various role to provide the Leadership in Information Technology and Cutting edge Technology.

REFERENCES

[1] Dynamics and Control of Large Electric Power Systems. Ilic, M. and Zaborszky, J. John Wiley \& Sons, Inc. © 2000, p. 756.
[2] Modeling and Evaluation of Intrusion Tolerant Systems Based on Dynamic Diversity Backups. Meng, K. et al. Proceedings of the 2009 International Symposium on Information Processing (ISIP'09). Huangshan, P. R. China, August 21-23, 2009, pp. 101-104
[3] Characterizing Intrusion Tolerant Systems Using A State Transition Model. Gong, F. et al., April 24, 2010.
[4] Energy Assurance Daily, September 27, 2007. U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability, Infrastructure Security and Energy Restoration Division. April 25, 2010.
[5] CENTIBOTS Large Scale Robot Teams. Konoledge, Kurt et al. Artificial Intelligence Center, SRI International, Menlo Park, CA 2003.
[6] Handling Communication Restrictions and Team Formation in Congestion Games, Agogino, A. and Tumer, K. Journal of Autonomous Agents and Multi Agent Systems, 13(1):97-115, 2006.
[7] Robotics and Autonomous Systems Research, School of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, Oregon State University
[8] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, "Communication and computation in buildings: A short introduction and overview," IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 35773584, Nov. 2010.
[9] V. C. Gungor and F. C. Lambert, "A survey on communication networks for electric system automation," Comput. Networks, vol. 50, pp. 877-897, May 2006.
[10] S. Paudyal, C. Canizares, and K. Bhattacharya, "Optimal operation of distribution feeders in smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4495-4503, Oct. 2011.
[11] D. M. Laverty, D. J. Morrow, R. Best, and P. A. Crossley, "Telecommunications for smart grid: Backhaul solutions for the distribution network," in Proc. IEEE Power and Energy Society General Meeting, Jul. 25-29, 2010, pp. 1-6.
[12] L. Wenpeng, D. Sharp, and S. Lancashire, "Smart grid communication network capacity planning for power utilities," in Proc. IEEE PES, Transmission Distrib. Conf. Expo., Apr. 19-22, 2010, pp. 1-4.
[13] Y. Peizhong, A. Iwayemi, and C. Zhou, "Developing ZigBee deployment guideline under WiFi interference for smart grid applications," IEEE Trans. Smart Grid, vol. 2, no. 1, pp. 110-120, Mar. 2011.
[14] C. Gezer and C. Buratti, "A ZigBee smart energy implementation for energy efficient buildings," in Proc. IEEE 73rd Veh. Technol. Conf. (VTC Spring), May 15-18, 2011, pp. 1-5.
[15] R. P. Lewis, P. Igic, and Z. Zhongfu, "Assessment of communication methods for smart electricity metering in the U.K.," in Proc. IEEE PES/IAS Conf. Sustainable Alternative Energy (SAE), Sep. 2009, pp. 1-4.
[16] A. Yarali, "Wireless mesh networking technology for commercial and industrial customers," in Proc. Elect. Comput. Eng., CCECE,May 1-4, 2008, pp. 000047000052.
[17] M. Y. Zhai, "Transmission characteristics of low-voltage distribution networks in China under the smart grids environment," IEEE Trans. Power Delivery, vol. 26, no. 1, pp. 173-180, Jan. 2011.
[18] V. Paruchuri, A. Durresi, and M. Ramesh, "Securing powerline communications," in Proc. IEEE Int. Symp. Power Line Commun. Appl., (ISPLC), Apr. 2-4, 2008, pp. 64-69.
[19] Q.Yang, J. A. Barria, and T. C. Green, "Communication infrastructures for distributed control of power distribution

Akash K Singh / International Journal of Engineering Research and Applications

(IJERA) ISSN: 2248-9622 www.ijera.com
Vol. 2, Issue 6, November- December 2012, pp.434-461
networks," IEEE Trans. Ind. Inform., vol. 7, no. 2, pp. 316-327, May 2011.
[20] T. Sauter and M. Lobashov, "End-to-end communication architecture for smart grids," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1218-1228, Apr. 2011.
[21] K. Moslehi and R. Kumar, "Smart grid-A reliability perspective," Innovative Smart Grid Technologies (ISGT), pp. 1-8, Jan. 19-21, 2010.
[22] Southern Company Services, Inc., "Comments request for information on smart grid communications requirements," Jul. 2010
[23] R. Bo and F. Li, "Probabilistic LMP forecasting considering load uncertainty," IEEE Trans. Power Syst., vol. 24, pp. 1279-1289, Aug. 2009.
[24] Power Line Communications, H. Ferreira, L. Lampe, J. Newbury, and T. Swart (Editors), Eds. New York: Wiley, 2010.
[25] G. Bumiller, "Single frequency network technology for fast ad hoc communication networks over power lines," WiKuWissenschaftsverlag Dr. Stein 2010.
[31] G. Bumiller, L. Lampe, and H. Hrasnica, "Power line communications for large-scale control and automation systems," IEEE Commun. Mag., vol. 48, no. 4, pp. 106113, Apr. 2010.
[32] M. Biagi and L. Lampe, "Location assisted routing techniques for power line communication in smart grids," in Proc. IEEE Int. Conf. Smart Grid Commun., 2010, pp. 274-278.
[33] J. Sanchez, P. Ruiz, and R. Marin-Perez, "Beacon-less geographic routing made partical: Challenges, design guidelines and protocols," IEEE Commun. Mag., vol. 47, no. 8, pp. 85-91, Aug. 2009.
[34] N. Bressan, L. Bazzaco, N. Bui, P. Casari, L. Vangelista, and M. Zorzi, "The deployment of a smart monitoring system using wireless sensors and actuators networks," in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), 2010, pp. 49-54.
[35] S. Dawson-Haggerty, A. Tavakoli, and D. Culler, "Hydro: A hybrid routing protocol for low-power and lossy networks," in Proc. IEEE Int. Conf. Smart Grid Commun. (SmartGridComm), 2010, pp. 268-273.
[36] S. Goldfisher and S. J. Tanabe, "IEEE 1901 access system: An overview of its uniqueness and motivation," IEEE Commun. Mag., vol. 48, no. 10, pp. 150157, Oct. 2010.
[37] V. C. Gungor, D. Sahin, T. Kocak, and S. Ergüt, "Smart grid communications and networking," Türk Telekom, Tech. Rep. 11316-01, Apr 2011.

